Как работает световой. Как работает светодиод: принцип работы. Жесткий, прямой свет не смягчает изображение

Принцип работы пистолета

История создания светового пистолета

Наверное, многие из Вас в своё время увлекались играми на телевизионных приставках. Бессонные ночи напролёт с друзьями за экраном телевизора… А утром на работу… Вспомнили? Эпоху приставочных игр возглавляли 8- битные Dendy. Потом уже появились такие приставки, как Sega, Nintendo, Dream Cast и др. Но до сих пор многие из нас, ностальгируя, вспоминают про игры Battle City, Mario, Chip & Dale, Contra, Mortal Kombat…

В то время на российском игровом рынке особенно разгуляться было негде. Наши разработчики смогли разродиться лишь приставкой «Электроника Экси видео 02», которая подключалась к телевизору и позволяла играть в семь игр - с чёрно-белой графикой. Был в комплекте и световой пистолет – для стрельбы по белым квадратикам, летающим по экрану. Тогда это казалось шедевром… И вдруг появляется «Dendy» с цветным изображением, пистолетом и двумя нормальными джойстиками (а не тем убожеством, имевшим место в «Электронике»). Как говорится – почувствуйте разницу…

Относительно игровых пистолетов гуляло множество самых нелепых слухов. Каких только жутких фантазий не рождало человеческое воображение – и всё от незнания принципа работы устройства… Например, наиболее известные:

- если часто играть в игры с пистолетом, то телевизор можно угробить за 1-2 месяца;
- ни в коем случае нельзя подключенный к работающей приставке пистолет направлять на человека;
- излучение от работающего пистолета негативно влияет на проживающих в квартире… и т.п.

На самом же деле, вреда от работающего пистолета не больше, чем, например, от того же джойстика. И всё потому, что пистолет при работе ничего не излучает, а, наоборот, - принимает внешний сигнал.

В пистолете (который, на самом деле, называется Zapper) встроен фотодиод, принимающий свет, а из-за длинного «дула» этот фотодиод становится узконаправленным. В момент нажатия «курка» весь экран на мгновение заливается чёрным цветом, а мишень (например, утка в «Duck Hunter») заменяется белым прямоугольником. Глаз человека не успевает различить смену изображения на долю секунды. Но для процессора игровой приставки этого времени вполне достаточно. Если «дуло» было направлено на белый прямоугольник, засчитывается попадание. Если же мишеней было несколько, то мишени подсвечиваются по очереди (подмигивая) и приставка вычисляет попадание, используя бинарный поиск.


Это одна из самых простых реализаций светового пистолета. В других приставках использовались и более сложные методы, к примеру учитывающие то, что луч развёртки (в ЭЛТ-телевизорах) освещает только одну точку в каждый момент времени. Приставка заливала экран белым в момент нажатия и отсчитывала время до засветки фотодиода. Таким образом, направление можно было вычислить более точно, а количество мишеней определялось «радиусом поражения» пистолета. Эта схема, к примеру, использовалась в приставках SNES.

Он вокруг нас и позволяет нам видеть мир. Но спросите любого из нас, и большинство не сможет объяснить, что такое на самом деле этот свет. Свет помогает нам понимать мир, в котором мы живем. Наш язык это отражает: во тьме мы передвигаемся на ощупь, свет мы начинаем видеть вместе с наступлением зари. И все же мы далеки от полного понимания света. Если вы приблизите луч света, что в нем будет? Да, свет движется невероятно быстро, но разве его нельзя применить для путешествий? И так далее и тому подобное.

Конечно, все должно быть не так. Свет озадачивает лучшие умы на протяжении веков, но знаковые открытия, совершенные за последние 150 лет, постепенно приоткрывали завесу тайны над этой загадкой. Теперь мы более-менее понимаем, что она такое.

Физики современности не только постигают природу света, но и пытаются управлять ей с беспрецедентной точностью - и значит, свет очень скоро можно заставить работать самым удивительным способом. По этой причине Организация Объединенных Наций провозгласила 2015 году Международным годом Света.

Свет можно описать всевозможными способами. Но начать стоит с этого: свет — это форма излучения (радиации). И в этом сравнении есть смысл. Мы знаем, что избыток солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может вызвать риск развития некоторых форм рака; нетрудно провести параллели.


Но . В конце 19 века ученые смогли определить точную суть светового излучения. И что самое странное, это открытие пришло не в процессе изучения света, а вышло из десятилетий работы над природой электричества и магнетизма.

Электричество и магнетизм кажутся совершенно разными вещами. Но ученые вроде Ганса Христиана Эрстеда и Майкла Фарадея установили, что те глубоко переплетаются. Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет иглу магнитного компаса. Между тем, Фарадей обнаружил, что перемещение магнита вблизи провода может генерировать электрический ток в проводе.

Математики того дня использовали эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизм». Но только Джеймс Клерк Максвелл смог описать полную картину.

Вклад Максвелла в науку сложно переоценить. Альберт Эйнштейн, который вдохновлялся Максвеллом, говорил, что тот изменил мир навсегда. Среди прочих вещей, его вычисления помогли нам понять, что такое свет.


Максвелл показал, что электрические и магнитные поля передвигаются в виде волн, и эти волны движутся со скоростью света. Это позволило Максвеллу предсказать, что свет сам по себе переносится электромагнитными волнами - и это означает, что свет является формой электромагнитного излучения.

В конце 1880-х, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц первым официально продемонстрировал, что теоретическая концепция электромагнитной волны Максвелла была верной.

«Я уверен, что если бы Максвелл и Герц жили в эпоху Нобелевской премии, они бы точно одну получили», - говорит Грэм Холл из Университета Абердина в Великобритании - где работал Максвелл в конце 1850-х.

Максвелл занимает место в анналах науки о свете по другой, более практической причине. В 1861 году он обнародовал первую устойчивую цветную фотографию, полученную с использованием системы трехцветного фильтра, которая заложила основу для многих форм цветной фотографии сегодня.


Сама фраза о том, что свет является формой электромагнитного излучения, многого не говорит. Но помогает описать то, что мы все понимаем: свет - это спектр цветов. Это наблюдение восходит еще к работам Исаака Ньютона. Мы видим цветовой спектр во всей его красе, когда радуга всходит на небе - и эти цвета напрямую связаны с максвелловским понятием электромагнитных волн.

Красный свет на одном конце радуги - это электромагнитное излучение с длиной волны от 620 до 750 нанометров; фиолетовый цвет на другом конце - излучение с длиной волны от 380 до 450 нм. Но в электромагнитном излучении есть и больше, чем видимые цвета. Свет с длиной волны длиннее красного мы называем инфракрасным. Свет с длиной волны короче фиолетового называем ультрафиолетовым. Многие животные могут видеть в ультрафиолетовом, некоторые люди тоже, говорит Элефтериос Гулильмакис из Института квантовой оптики Макса Планка в Гархинге, Германия. В некоторых случаях люди видят даже инфракрасный. Возможно, поэтому нас не удивляет, что ультрафиолетовый и инфракрасный мы называем формами света.

Любопытно, однако, что если длины волн становятся еще короче или длиннее, мы перестаем называть их «светом». За пределами ультрафиолетового, электромагнитные волны могут быть короче 100 нм. Это царство рентгеновских и гамма-лучей. Вы когда-нибудь слышали, чтобы рентгеновские лучи называли формой света?

«Ученый не скажет «я просвечиваю объект рентгеновским светом». Он скажет «я использую рентгеновские лучи», - говорит Гулильмакис.

Между тем, за пределами инфракрасных и электромагнитных длин волны вытягиваются до 1 см и даже до тысяч километров. Такие электромагнитные волны получили названия микроволн или радиоволн. Кому-то может показаться странным воспринимать радиоволны как свет.

«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики, - говорит Гулильмакис. - Вы будете описывать их одними и теми же уравнениями и математикой». Только наше повседневное восприятие различает их.

Таким образом, мы получаем другое определение света. Это очень узкий диапазон электромагнитного излучения, которое могут видеть наши глаза. Другими словами, свет — это субъективный ярлык, который мы используем только вследствие ограниченности наших органов чувств.

Если вам нужны более подробные доказательства того, насколько субъективно наше восприятие цвета, вспомните радугу. Большинство людей знают, что спектр света содержит семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. У нас даже есть удобные пословицы и поговорки про охотников, которые желают знать место нахождения фазана. Посмотрите на хорошую радугу и попробуйте разглядеть все семь. Это не удалось даже Ньютону. Ученые подозревают, что ученый разделил радугу на семь цветов, поскольку число «семь» было очень важным для древнего мира: семь нот, семь дней недели и т. п.


Работа Максвелла в области электромагнетизма завела нас дальше и показала, что видимый свет был частью широкого спектра радиации. Также стала понятна истинная природа света. На протяжении веков ученые пытались понять, какую на самом деле форму принимает свет на фундаментальных масштабах, пока движется от источника света к нашим глазам.

Некоторые считали, что свет движется в форме волн или ряби, через воздух или загадочный «эфир». Другие думали, что эта волновая модель ошибочна, и считали свет потоком крошечных частиц. Ньютон склонялся ко второму мнению, особенно после серии экспериментов, которые он провел со светом и зеркалами.


Он понял, что лучи света подчиняются строгим геометрическим правилам. Луч света, отраженный в зеркале, ведет себя подобно шарику, брошенному прямо в зеркало. Волны не обязательно будут двигаться по этим предсказуемым прямым линиям, предположил Ньютон, поэтому свет должен переноситься некоторой формой крошечных безмассовых частиц.

Проблема в том, что были в равной степени убедительные доказательства того, что свет представляет собой волну. Одна из самых наглядных демонстраций этого была проведено в 1801 году. Томаса Юнга, в принципе, можно провести самостоятельно дома.

Возьмите лист толстого картона и аккуратно проделайте в нем два тонких вертикальных разреза. Затем возьмите источник «когерентного» света, который будет излучать свет только определенной длины волны: лазер отлично подойдет. Затем направьте свет на две щели, чтобы проходя их он падал на другую поверхность.

Вы ожидаете увидеть на второй поверхности две ярких вертикальных линии на тех местах, где свет прошел через щели. Но когда Юнг провел эксперимент, он увидел последовательность светлых и темных линий, как на штрих-коде.


Когда свет проходит через тонкие щели, он ведет себя подобно водяным волнам, которые проходят через узкое отверстие: они рассеиваются и распространяются в форме полусферической ряби.

Когда этот свет проходит через две щели, каждая волна гасит другую, образуя темные участки. Когда же рябь сходится, она дополняется, образуя яркие вертикальные линии. Эксперимент Юнга буквально подтвердил волновую модель, поэтому Максвелл облек эту идею в твердую математическую форму. Свет - это волна.


Но потом произошла квантовая революция.

Во второй половине девятнадцатого века, физики пытались выяснить, как и почему некоторые материалы абсорбируют и излучают электромагнитное излучение лучше других. Стоит отметит, что тогда электросветовая промышленность только развивалась, поэтому материалы, которые могут излучать свет, были серьезной штукой.

К концу девятнадцатого века ученые обнаружили, что количество электромагнитного излучения, испускаемого объектом, меняется в зависимости от его температуры, и измерили эти изменения. Но никто не знал, почему так происходит. В 1900 году Макс Планк решил эту проблему. Он выяснил, что расчеты могут объяснить эти изменения, но только если допустить, что электромагнитное излучение передается крошечными дискретными порциями. Планк называл их «кванта», множественное число латинского «квантум». Спустя несколько лет Эйнштейн взял его идеи за основу и объяснил другой удивительный эксперимент.

Физики обнаружили, что кусок металла становится положительно заряженным, когда облучается видимым или ультрафиолетовым светом. Этот эффект был назван фотоэлектрическим.

Атомы в металле теряли отрицательно заряженные электроны. Судя по всему, свет доставлял достаточно энергии металлу, чтобы тот выпустил часть электронов. Но почему электроны так делали, было непонятно. Они могли переносить больше энергии, просто изменив цвет света. В частности, электроны, выпущенные металлом, облученным фиолетовым светом, переносили больше энергии, чем электроны, выпущенные металлом, облученным красным светом.

Если бы свет был просто волной, это было бы нелепо.


Обычно вы изменяете количество энергии в волне, делая ее выше - представьте себе высокое цунами разрушительной силы - а не длиннее или короче. В более широком смысле, лучший способ увеличить энергию, которую свет передает электронам, это сделать волну света выше: то есть сделать свет ярче. Изменение длины волны, а значит и света, не должно было нести особой разницы.

Эйнштейн понял, что фотоэлектрический эффект проще понять, если представить свет в терминологии планковских квантов.

Он предположил, что свет переносится крошечными квантовыми порциями. Каждый квант переносит порцию дискретной энергии, связанной с длиной волны: чем короче длина волны, тем плотнее энергия. Это могло бы объяснить, почему порции фиолетового света с относительно короткой длиной волны переносят больше энергии, чем порции красного света, с относительно большой длиной.

Также это объяснило бы, почему простое увеличение яркости света не особо влияет на результат.

Свет поярче доставляет больше порций света к металлу, но это не изменяет количество энергии, переносимой каждой порцией. Грубо говоря, одна порция фиолетового света может передать больше энергии одному электрону, чем много порций красного света.

Эйнштейн назвал эти порции энергии фотонами и в настоящее время их признали фундаментальными частицами. Видимый свет переносится фотонами, другие виды электромагнитного излучения вроде рентгеновского, микроволнового и радиоволнового - тоже. Другими словами, свет - это частица.


На этом физики решили положить конец дебатам на тему того, из чего состоит свет. Обе модели были настолько убедительными, что отказываться от одной не было никакого смысла. К удивлению многих нефизиков, ученые решили, что свет ведет себя одновременно как частица и как волна. Другими словами, свет - это парадокс.

При этом у физиков не возникло проблем с раздвоением личности света. Это в какой-то мере сделало свет полезным вдвойне. Сегодня, опираясь на работы светил в прямом смысле слова - Максвелла и Эйнштейна, - мы выжимаем из света все.

Оказывается, что уравнения, используемые для описания света-волны и света-частицы, работают одинаково хорошо, но в некоторых случаях одно проще использовать, чем другое. Поэтому физики переключаются между ними, примерно как мы используем метры, описывая собственный рост, и переходим на километры, описывая поездку на велосипеде.

Некоторые физики пытаются использовать свет для создания шифрованных каналов связи, для денежных переводов, к примеру. Для них имеет смысл думать о свете как о частицах. Виной всему странная природа квантовой физики. Две фундаментальные частицы, как пара фотонов, могут быть «запутаны». Это значит, что они будут иметь общие свойства вне зависимости от того, как далеки будут друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.

Еще одна особенность этой запутанности в том, что квантовое состояние фотонов изменяется, когда их считывают. Это значит, что если кто-то попытается подслушать зашифрованный канал, в теории, он сразу выдаст свое присутствие.

Другие, как Гулильмакис, используют свет в электронике. Им полезней представлять свет в виде серии волн, которые можно приручить и контролировать. Современные устройства под названием «синтесайзеры светового поля» могут сводить световые волны в идеальной синхронности друг с дружкой. В результате они создают световые импульсы, которые более интенсивные, кратковременные и направленные, чем свет обычной лампы.

За последние 15 лет эти устройства научились использовать для приручения света с чрезвычайной степенью. В 2004 году Гулильмакис и его коллеги научились производить невероятно короткие импульсы рентгеновского излучения. Каждый импульс длился всего 250 аттосекунд, или 250 квинтиллионных секунды.

Используя эти крошечные импульсы как вспышку фотоаппарата, они смогли сделать снимки отдельных волн видимого света, которые колеблются намного медленнее. Они буквально сделали снимки движущегося света.

«Еще со времен Максвелла мы знали, что свет — это осциллирующее электромагнитное поле, но никто даже и подумать не мог, что мы можем сделать снимки осциллирующего света», - говорит Гулильмакис.


Наблюдение за этими отдельными волнами света стало первым шагом по направлению к управлению и изменению света, говорит он, подобно тому, как мы изменяем радиоволны для переноса радио- и телевизионных сигналов.

Сто лет назад фотоэлектрический эффект показал, что видимый свет влияет на электроны в металле. Гулильмакис говорит, что должна быть возможность точно контролировать эти электроны, используя волны видимого света, измененные таким образом, чтобы взаимодействовать с металлом четко определенным образом. «Мы можем управлять светом и с его помощью управлять материей», - говорит он.

Это может произвести революцию в электронике, привести к новому поколению оптических компьютеров, которые будут меньше и быстрее наших. «Мы сможем двигать электронами как заблагорассудится, создавая электрические токи внутри твердых веществ с помощью света, а не как в обычной электронике».

Вот еще один способ описать свет: это инструмент.

Впрочем, ничего нового. Жизнь использовала свет еще с тех пор, когда первые примитивные организмы развили светочувствительные ткани. Глаза людей улавливают фотоны видимого света, мы используем их для изучения мира вокруг. Современные технологии еще дальше уводят эту идею. В 2014 году по химии была присуждена исследователям, которые построили настолько мощный световой микроскоп, что он считался физически невозможным. Оказалось, что если постараться, свет может показать нам вещи, которые мы думали никогда не увидим.

В переводе с английского сокращение LED дословно означает «диод, который излучает свет». Это полупроводниковое устройство, способное трансформировать электрический ток в простое приспособление, конструкция которого довольно сильно отличается от привычных нам изделий для освещения (лампы накаливания, разрядные, люминесцентные лампы и т. д.).

Как работает светодиод, будет интересно узнать каждому. Этот прибор не имеет изначально ненадежных хрупких элементов конструкции и стеклянной колбы (в отличие от других ламп). Стоимость диодов настолько мала, что ненамного отличается от батареек, которые служат их источником питания. Популярность подобных изделий объясняется рядом факторов, в том числе и их конструкцией.

История возникновения

Рассматривая вопрос, почему работают светодиоды, следует изучить историю их возникновения. Впервые подобное устройство было создано в 1962 г. ученым Н. Холоньяком. Это был монохромный свечения. Он имел ряд недостатков, но сама технология была признана перспективной.

Спустя 10 лет после создания красного диода появились зеленые и желтые разновидности. Их применяли в качестве индикаторов во многих электронных приборах. Интенсивность светового потока диодов благодаря научным разработкам постоянно возрастала. В 90-х годах был создан осветитель с эффективностью потока 1 люмен.

В 1993 году С. Накамура создал первый синий диод, который характеризовался высокой яркостью. С этого момента стало возможным создавать любой цвет спектра (в том числе белый). Технологии неустанно развивались.

При соединении синего и ультрафиолетового типа диодов получается белый люминофорный осветитель. Они стали постепенно вытеснять лампы накаливания. К 2005 году выпускались диоды с мощностью светового потока до 100 лм и даже выше. Стали изготавливать белые осветительные приборы с разными оттенками (теплые, холодные).

Устройство светодиода

Чтобы понять, как работает точечный светодиод, необходимо подробно рассмотреть его устройство. Этот осветительный прибор, по мнению представителей Ассоциации развития оптоэлектронной индустрии и департамента энергетики, в скором времени станет самым востребованным источником освещения в обычных домах, офисах, учреждениях.

Светодиод имеет основой полупроводниковый кристалл. Он пропускает электрический ток только в одну сторону. Кристалл расположен на особой подложке. Она не проводит ток. Корпус защищает кристалл от внешних воздействий. Он имеет выходы в виде контактов, а также оптическую систему.

Чтобы повысить продолжительность эксплуатации прибора, пространство между пластиковой линзой и самим кристаллом заполнили прозрачным силиконовым компонентом. Чтобы отводить избыточное тепло, применяется алюминиевая основа. Это обычное устройство современного диода. При работе он выделяет относительно небольшое Это также является преимуществом прибора.

Принцип работы

Рассматривая, как работает светодиод, необходимо вникнуть в основной принцип работы подобных устройств. Прибор представленного типа имеет один электронно-дырчатый переход. Это связано с разным принципом проводимости компонентов осветителя. Один полупроводник имеет излишек электронов, а другой - излишек дырок.

При помощи процесса легирования дырчатый материал обогащается носителями отрицательного заряда. Если в месте обогащения полупроводников противоположными зарядами приложить ток, получится прямое смещение. Через переход этих двух материалов побежит электричество.

При этом в корпусе диода происходит сплавление носителей зарядов с различным электрическим статусом. Когда дырки и электроны сталкиваются, выделяется определенное количество энергии. Это квант светового потока. Его называют фотоном.

Цвет светодиода

При создании диодов применяются различные полупроводниковые материалы. Это определяет цвет, который испускает при работе представленное устройство. Разные материалы способны посылать в пространство волны разной длины. Это позволяет человеческому глазу увидеть тот или иной цвет видимого спектра.

Изучая вопрос, как работает светодиод, следует рассмотреть материалы полупроводников. Раньше в подобных целях применялись фосфид галлия, тройные соединения GaAsP, AlGaAs. При этом прибор мог посылать в пространство красный, желто-зеленый

Представленная технология ныне применяется только для индикаторных устройств. Сегодня для таких изделий используют алюминий индий-галлий (AllnGaP) и индий-нитрид галлия (InGaN). Они выдерживают довольно высокий уровень проходящего тока, высокие показатели влажности и нагрева. Возможна комбинация светодиодов разных типов.

Смешение цветов

Современные диодные ленты могут выдавать разные оттенки светового потока. Один прибор может производить монотонный цвет. При создании многокристального устройства возможно получить огромное количество различных оттенков. Подобно монитору телевизора или компьютера, диод может создать любой цвет при помощи модели RGB (расшифровывается как красный, зеленый, синий).

Это простой принцип, позволяющий понять, как работают RGB-светодиоды. При помощи этой технологии можно создавать и белое освещение. Для этого все три цвета смешиваются в равной пропорции.

Однако, помимо представленной технологии, можно получить белое свечение при соединении диода коротковолнового излучения (ультрафиолетовый, синий) вместе с желтым покрытием люминофорного типа. При комбинации фотонов желтого и синего цвета в итоге получается белое свечение.

Производство

Чтобы понять, от скольких вольт работают светодиоды, необходимо рассмотреть производство этих устройств. В первую очередь следует отметить, что приборы с матрицей типа RGB стоят дороже, чем люминоформы. Причем последние позволяют добиться освещения высокого качества.

Недостатком люминофоров является меньшая светоотдача, а также различная окраска (температура) потока. Это устройство стареет быстрее, чем светодиод. Поэтому в продажу поступают осветительные приборы обоих принципов работы. Для создания индикаторов производятся диоды с потреблением 2-4 В напряжения постоянного типа (при токе 50 мА).

Для создания полноценного освещения необходимы устройства с таким же потреблением напряжения, но более высоким уровнем тока - до 1 А. Если в одном модуле диоды подключить последовательно, суммарное напряжение будет достигать 12 или 24 В.

Усиление яркости

Рассматривая вопрос, от какого напряжения работают светодиоды, следует сказать о повышении яркости представленных устройств. Мощность таких приборов достигает 60 мВт. Если подобные диоды установить в средний по габаритам корпус, световых элементов потребуется установить 15-20 шт.

Диоды с усиленной яркостью свечения могут нести в себе мощность до 240 Вт. Чтобы обеспечить нормальную подсветку, подобных элементов потребуется 4-8 шт. В продаже представлены устройства, способные полноценно освещать помещения, наружную рекламу, витрины и т. д. Некоторые ленты создаются для выполнения подсветки средней или малой интенсивности.

Для подключения представленного оборудования применяют блоки управления соответствующей мощности. Для цветных лент возможно применять контроллеры, управляющие не только интенсивностью освещения, но и задающие оттенки и режимы работы устройства.

Управление свечением

Существует огромное количество вариантов представленного оборудования. Есть светодиоды, работающие от батареек (например, в фонариках), запитанные в стационарную сеть. Их применяют как для внутренней, так и внешней работы. В зависимости от условий применения подбирается соответствующий класс защиты диода.

Чтобы отрегулировать яркость свечения, напряжение питания не снижают. Для уменьшения интенсивности свечения применяется широтно-импульсная модуляция (ШИМ). В этом случае приобретается блок управления.

Представленный метод заключается в подаче на диод импульсно-модулированного тока. Частота сигнала при этом достигает тысяч герц. Может изменяться ширина импульсов и интервалов пауз. При этом можно управлять свечением прибора. Диод в этом случае не погаснет.

Долговечность

Диоды считаются долговечными устройствами. Это объясняется их конструкцией. Однако если не работают светодиоды на лампе, возможно, срок их эксплуатации вышел. Это можно определить по насыщенности свечения и изменению цвета.

Также специалисты отмечают, что срок эксплуатации маломощных устройств гораздо продолжительнее. Но даже в самых ярких лентах или лампах диоды гарантированно работают 20-50 тыс. часов. Так как они не имеют хрупких элементов конструкции, механические воздействия с большей вероятностью не нанесут вреда подобным осветителям.

Изучив, как работает светодиод, можно понять принцип устройства этого прибора, а также его эксплуатационные характеристики. Это оборудование считается осветителями будущего поколения.

В фотостудии мы имеем возможность создавать необходимый характер освещения с помощью источников света, светоформирующих насадок и отражателей (рефлекторов). Источники студийного света разделяются на импульсные и постоянного света.

Источники постоянного света - это мощные галогеновые лампы, потребляющие много электроэнергии и выделяющие безумное количество тепла. Поэтому их редко используют в фотографии, чаще в киносъемке.

Импульсные источники света (студийные вспышки) состоят из двух ламп, непосредственно лампы вспышки и обычной лампы «пилотного» света (далее «пилот») небольшой мощности (порядка 300W). «Пилот» необходим для того, чтобы оценить светотеневой рисунок, и его мощности недостаточно для съемки. Импульсные источники можно разделить по исполнению на два типа: моноблоки и генераторы.

В моноблоке элементы управления, лампа-вспышка и «пилот» выполнены в одном корпусе, который устанавливается на штатив и включается в розетку. В генераторе элементы управления несколькими источниками размещены в одном корпусе, а сами лампы на штативах подключаются к этому корпусу специальными проводами. Одно из удобств генераторов - это возможность быстро управлять мощностью сразу нескольких источников. Приборы генераторного исполнения обычно более высокого класса и имеют лучшие характеристики (мощность, длительность импульса, скорость перезаряда), чем моноблоки. Соответственно, они значительно дороже моноблоков.

Органы управления (основные: мощность импульса, мощность «пилота») могут отличаться в зависимости от фирмы-производителя студийного оборудования и модели прибора. Шкала мощности также может быть дискретной и выражаться либо в кратных значениях или процентах от максимальной мощности, либо указываться в диафрагменных числах (ступенях). Мощность импульсных студийных источников света указывают в Джоулях (Дж). Например: 150 Дж, 300 Дж, 500 Дж, 1000 Дж.

Производители профессионального студийного фотооборудования, которое можно купить в Москве: Hensel, Bowens, Broncolor, Profoto, Rekam, Prograph, Visatec, Multiblitz, Elinchrom, «Марко», «Марко-Про», Prolinсa, GuangBao, Falcon, Raylab. Светоформирующие насадки. Насадки - это навесные конструкции, которые присоединяются к источникам света через механическое соединение (байонет) и служат для изменения характера светового потока.

Характер света

    Направленный свет (жесткий, резкий) - свет, дающий на объекте резко выраженные переходы света и тени и в некоторых случаях блики (пример: прожектор, яркое солнце, любой точечный источник света).

    Рассеянный свет (мягкий, бестеневой) - свет, излучаемый большой поверхностью, равномерно и одинаково освещающий объект, вследствие чего отсутствуют резкие тени, блики (пример: свет из окна, завешенного белой шторой, отраженный свет от светлой стены, пасмурная облачная погода - отражение света от облаков). Разделение насадок по характеру света:

Направленный свет - тубусы, «тарелки», соты и др. Рассеянный свет - зонты (бывает на отражение и на просвет), софт-боксы и их разновидности и др.

Отражатели

Пассивное световое оборудование. Сами свет не излучают, а только отражают (или просвечивают), позволяя менять его направление, характер, цветовую температуру. Обычно это белая, черная, золотая или серебристая ткань, одетая на каркас круглой или прямоугольной формы.

Синхронизация импульса

Синхронизация импульса - одновременность импульса света и открытия затвора камеры. Перечислим основные способы синхронизаторов: ИК-пускатель, синхрокабель, вспышка фотоаппарата.

    ИК-пускатель - универсальный способ синхронизации. Это небольшая коробочка, которая крепится на место внешней вспышки вашей камеры (так называемый hot shoe, «горячий башмак»).

    Синхронизация происходит через инфракрасный импульс, так как в моноблоках есть соответствующие устройства-ловушки.

    Синхрокабель - синхронизация через провод, который подсоединяется в синхроразъем на источнике света и в синхроразъем камеры. Типы разъемов у разных фирм-производителей отличаются.

    Вспышка - встроенная или внешняя вспышка вашей камеры «поджигает» остальные источники света (в них установлены «ловушки»). Для того чтобы исключить вмешательство света от вспышки фотоаппарата в световую картину, необходимо прикрыть ее (например, куском картона) и уменьшить ее мощность.

В большинстве камер вспышка работает так: делается оценочный импульс, необходимый для того, чтобы определить экспозицию, а затем уже основной импульс. Глаз обычно воспринимает эти две вспышки как одну, но «ловушки» в источниках света срабатывают по первому импульсу, в результате кадр получается недоэкспонированным. Решение: либо отключить оценочный импульс в камере или вспышке (если это возможно, например, на камерах Nikon), либо воспользоваться кнопкой «экспопамяти».

Иногда встречаются импульсные источники, которые умеют пропускать первый оценочный импульс и срабатывать по второму, но это редкость, и все моноблоки в студии должны быть оборудованы этой функцией. Именно поэтому способ синхронизации с помощью вспышки камеры является неудобным.

Радиосинхронизация - синхронизация по радиоканалу. Обычно это комплект приемника и передатчика. Приемник включается в синхроразъем источника света, передатчик крепится на камеру, так же как и ИК-пускатель. Плюсы: не «слепнет» на ярком солнце, японские туристы не помешают своими вспышками во время выездной фотосессии.

Экспонометрия при работе с импульсным светом

Экспоавтоматика современных камер не рассчитана на работу со студийным импульсным светом. Определить экспозицию с помощью камеры невозможно! Поэтому студийная фотосъемка проводится исключительно в ручном режиме (M, Manual) камеры.

Чувствительность матрицы

Снимайте с минимальной доступной для вашей камеры чувствительностью, чтобы избежать цифрового шума. Также я настоятельно рекомендую снимать не в JPG, а в RAW.

Выдержка

Длительность импульса моноблоков чрезвычайно мала. Следовательно, выставляем в камере так называемую выдержку X-синхронизации (обычно 1/200–1/500 сек.). Выдержка синхронизации - минимальная выдержка, при которой полностью открыт затвор. Если поставить выдержку меньшую (более короткую), то вы получите неэкспонированную (черную) часть кадра. Если поставить более длительную выдержку, то это не повлияет на результат, ведь мощность импульсного света по сравнению с естественным светом в студии велика, а длительность импульса мала.

Вывод: при работе с импульсным светом в фотостудии управлять экспозицией с помощью выдержки невозможно. Диафрагма - единственный способ управлять экспозицией при работе с импульсными источниками, за исключением изменения мощности источников света или изменения расстояния от источника до фотомодели .

Определение правильной экспозиции

Мы уже уяснили, что можем влиять на экспозицию диафрагмой и мощностью моноблоков, но как определить верную экспозицию? Рассмотрим два варианта.

  • Флеш-метр

Для определения правильной экспозиции (правильной диафрагмы) существует прибор флеш-метр. По сути, это экспонометр, который, в отличие от встроенного в камеру, умеет работать с импульсным светом. Для использования флеш-метра достаточно прочитать несложную инструкцию.

  • Гистограмма яркости

Если же флеш-метра нет, не стоит отчаиваться. В цифровой камере есть возможность отобразить гистограмму полученного кадра. Гистограмма яркости - это график распределения полутонов изображения, в котором по горизонтальной оси представлена яркость (полутоновые градации от черного цвета слева до белого цвета справа), а по вертикали - относительное число точек с данным значением яркости (чем выше столбец, тем больше точек).

Изучив гистограмму, мы можем получить общее представление о правильности экспозиции (определить передержку и недодержку) и оценить требуемое изменение экспозиции. При съемке нужно всего лишь стремиться, чтобы гистограмма не упиралась в верхний край, что означает «недодержку» (левая часть) или «передержку» (правая часть), и по возможности следить за равномерностью распределения гистограммы по горизонтали (зависит от специфики конкретного кадра).

Если вы работаете в сфере кино или интересуетесь съемочным процессом, то наверняка вы уже знаете, как много зависит от освещения. Эта статья будет посвящена именно построению света в кинематографе и поможет вам начать лучше разбираться в этом искусстве.

Почему вам стоит обратить внимание на освещение?

Освещение – важнейшая часть кинопроизводства. Свет может создать персонажа, скрыть недостатки и вызвать у зрителя бурю эмоций: он так же важен, как и актерское мастерство и музыкальное сопровождение.

Многие независимые режиссеры нередко игнорируют свет и больше думают о качестве камеры и линзы. Но на самом деле даже с Panavision Panaflex изображение будет выглядеть скучным и плоским,если освещению не было уделено достаточно внимания.

С чего же начать?

Если вам хочется начать лучше разбираться в освещении, то знакомство с основной терминологией точно не помешает. Вот вам некоторые важные термины, необходимые для работы со светом:

Искусственный свет

Любой свет неестественного происхождения называется искусственным. В кинематографе искусственный свет используется как дополнение к дневному свету или для создания эффекта дневного света при его отсутствии.

Шторки осветительного прибора

Шторки используются на прожекторе для контроля и распределенияисточников света. Они могут быть использованы для создания теней и направления световых лучей.

Задний свет

Задний свет отделяет или приподнимает окружение. Он располагается лицом к линзе, сзади объекта или перед ним.

Отражающийся свет

Источник света, который отражается от белой поверхности. Такой свет выглядит очень мягко и помогает сделать светлее даже очень большие пространства.

Цветовая температура

Цветовая температура измеряется в Кельвинах и определяет тон источника света. В кинопроизводстве различные цветовые фильтры помогают сбалансировать изображение.

Линза Френеля

Линза, используемая в некоторых лампах для фокусировки и контроля источников света

Жесткий свет

Прямой, контролируемый источник света, который используется для создания драматического эффекта.

Хайлайты

Ярко освещенные области площадки, которые задают форму и структуру .

Мягкий свет

Менее контролируемый источник света, который создает более плоскую и гладкую картинку. Идеально подходит для освещения лица.

Дневной свет

Естественные источники света, могут быть воссозданы с помощьюметаллогалогенной лампы

Теперь, давайте ознакомимся с несложной, но отличной техникой постановки света, которая поможет вам лучше понять, как работает освещение в кинематографе. Она называется 3 точки освещения . И, как и говорит название, для работы в нем нам понадобятся 3 основных источника света: Ключевой, Заполняющий и Контровой .

Ключевой свет

Это основной и самый сильный источник света. Он располагается по обе стороны от камеры и обозначает все объекты на площадке.

Заполняющий свет

Он располагается напротив ключевого света. Он должен быть мягче, чем основной свет (3:1). Основное его предназначение – это избавится от всех нежелательных теней, созданных ключевым светом.

Контровой

Располагается за человеком или любым другим объектом. Основное его предназначение – выделить какие-то особенности, такие как плечи и волосы. Он отделяет актера от фона и помогает сделать его более объемным, трехмерным.

Вот так будет выглядеть основной объект после настойки всех трех источников света:

После того как вы научитесь понимать все тонкости этой техники, вы с легкостью можете экспериментировать, добавляя и убирая источники света для создания необычных эффектов.

Теперь, после того как вы уже ознакомились со способами постановки света, мы хотели бы дать вам несколько советов и небольших хитростей, которые смогут помочь вам добиться невероятно красивого эффекта и сделают изображение еще интереснее:

1. Жесткий, прямой свет не смягчает изображение

Если вам хочется создать более плоское изображение – используйте диффузор как для ключевого, так и для заполняющего света, сохраняя соотношение 3:1.

2. Обратите внимание на фон

Для того, чтобы избежать нежелательных теней на стенах и декорациях, старайтесь держать актеров как можно дальше от фона.

3. Недостаточно места? Сделайте свет ярче

Если пространство, где проходит съемка, ограничено, чтобы избежать неаккуратных теней просто сделайте свет ярче.

4.Нет диффузора? Используйте отражатели

Еще один способ сделать картинку более мягкой – это отразить свет с помощью светоотражателей или белых стен.

5. Скучная картинка?

Попробуйте использовать цветной гель на контровом свете. Это поможет создать очень интересную атмосферу.

6. Не забывайте о пудре

Всегда держите натуральную пудру для лица неподалеку, если вы работаете с людьми. Это поможет избежать некрасивых отблесков на лице.

Главная фотография взята из сайта - Depositphotos.com