Как сделать дом на солнечных батареях. Солнечная батарея своими руками (пошагово, фото). Солнечная батарея: что это вообще такое и как работает

На сегодняшний день из всех известных человечеству источников альтернативной энергии наиболее популярными являются солнечные панели, батареи и прочие генераторы на основе гелиоэнергии. Учитывая текущую стоимость расходов на энергоресурсы, многие интересуются, где приобрести солнечные панели для своего дома, каковы цены на них и есть ли готовые решения. И поскольку рост курса валюты прямо отражается на платежной способности населения, все больше граждан стремятся узнать побольше о панелях российского производства.

Что такое солнечные панели и как их используют для дома

Несмотря на то что данному виду энергоснабжения домов уже более 30 лет, не так много специалистов в этой области. Почему использование солнечных панелей для частного дома так выгодно? Ответ прост: платить надо только за оборудование и установку, впоследствии энергоноситель бесплатен! В таких странах, как КНР, Соединенные Штаты, Франция, Италия и Германия, до 30 % населения устанавливает на крышу батареи, чтобы пользоваться миллиардами неиссякаемых киловатт солнечной энергии. Если это бесплатно, в чем секрет?


Принцип работы батареи следующий: представим себе полупроводники из кристаллов (например, из кремния), которые преобразовывают кванты света в составляющие электрического тока. Панель содержит сотни тысяч таких кристаллов. В зависимости от требуемой мощности площадь такого покрытия составляет от пары квадратных сантиметров (вспомним калькулятор) до сотен квадратных метров – например, для орбитальных станций.

Несмотря на кажущуюся простоту устройств, их использование на территории России очень ограничено – климатом, погодой, временем года и суток. Плюс к тому, чтобы система подавала ток в сеть, необходимо приобрести:

  • аккумулятор, который будет накапливать энергию на случай перепадов напряжения;
  • инвертор, который будет переводить постоянный ток в переменный;
  • систему, контролирующую заряд аккумулятора.

Кратко о потреблении

Среднестатистическая семья из 4 человек потребляет 250–300 кВт в месяц. Солнечные модули для бытового пользования дают в среднем 100 Вт с 1 кв. м в сутки (в ясную погоду). Для того чтобы питать полностью дом, нужно установить минимум 30, в идеале 40 секций, что обойдется не менее чем в 10 000 у. е. При этом крыша должна быть ориентирована на южную сторону, а количество солнечных дней в месяц в среднем не должно быть не меньше 18–20. Ниже приведена карта солнечных дней.


Вывод: солнечные панели хороши в качестве резервного источника электрической энергии. Кроме того, нужно знать, как их подобрать, чтобы мощности хватало для обеспечения бытовых нужд. Зато, вне зависимости от аварий, ваш дом всегда будет снабжен электричеством.

1. Панели от ЗАО «Телеком-СТВ»

Российская компания «Телеком-СТВ» (г. Зеленоград) производит продукцию в среднем на 30 % дешевле, чем немецкие аналоги: цены начинаются от 5 600 руб. за панели на 100 Вт. Панели данного производителя имеют КПД до 20–21 %. Основной «фишкой» данного предприятия стала запатентованная технология изготовления кремниевых пластин диаметром до 15 мм и солнечных модулей на их основе.


Какую батарею от ЗАО «Телеком-СТВ» можно посмотреть? Наиболее популярная модель носит название ТСМ, далее идет маркировка в зависимости от мощности: от 15 до 230 Вт (цена указана приблизительно).

Модель Мощность, Вт Габариты, мм Вес, кг Цена, руб.
ТСМ-15 18 430 × 232 × 43 1,45 от 3 500
ТСМ-40 44 620 × 540 × 43 4,05 от 6 000
ТСМ-50 48 620 × 540 × 43 4,05 от 6 575
ТСМ-80А 80 773 × 676 × 43 6,7 от 8 500
ТСМ-80B 80 773 × 676 × 43 6,7 от 9 000
ТСМ-95А 98 1 183 × 563 × 43 7,9 от 10 750
ТСМ-95В 98 1 183 × 563 × 43 7,9 от 11 000
ТСМ-110А 115 1 050 × 665 × 43 8,8 от 12 500
ТСМ-110В 115 1 050 × 665 × 43 8,8 от 12 800
..
ТСМ-270А 270 1 633 × 996 × 43 18,5 от 23 370

Основной тип производимых панелей – монокристаллические, хотя каждая модель также может быть представлена в виде мульти (поли-) кристаллической. Каждый вид имеет свои преимущества и недостатки (см. таблицу).

Выбор, конечно, ограничивается возможностями бюджета, поэтому продолжим обзор других недорогих и надежных устройств от российских производителей.

2. Hevel – завод в Чувашии

Одним из крупнейших производителей солнечных панелей в России является компания «Хевел» . В 2017 году компания провела модернизацию производства и перешла с тонкопленочной на новую гетероструктурную технологию изготовления солнечных модулей. Модули нового поколения сочетают в себе преимущества тонкопленочной и кристаллической технологий, обеспечивают эффективную работу модуля при высоких и низких температурах (от -50 °С до +85°С), а также в условиях рассеянного света. Средний КПД солнечного модуля составляет 20%. По этому показателю модули ГК «Хевел» входят в мировую тройку лидеров. Срок службы модуля составляет не менее 25 лет.


Какую батарею от Hevel можно посмотреть для примера? Вот таблица с параметрами наиболее популярного гетероструктурного модуля:

3. Рязанский ЗМКП

Рязанский завод металлокерамических приборов функционирует с 1963 года, однако с 2002 года перешел на систему международного контроля качества ISO 9001 и выпускает панели строго в соответствии с ее требованиями, а также с нормами ГОСТ 12.2.007-75.

В прейскуранте компании можно найти две актуальные модели RZMP мощностью 130 и 220 Вт. Их КПД варьируется от 12 до 17,1 %. Наносятся солнечные элементы на окрашенную алюминиевую основу методом последовательного соединения. Вот их сравнительные характеристики:

RZMP 130-Т подходит для автономного снабжения отдельных помещений, бытовых приборов (например, нагревательный котел). Более мощная модель, от 220 до 240 Вт, покупается чаще для резервного снабжения всего дома. Ее стоимость варьируется от 13 200 до 14 400 руб. за модуль.

4. Краснодарский «Сатурн»

Панели кубанского производства выпускаются с 1971 года, за этот период предприятие выпустило более 20 000 квадратных метров продукции. «Сатурн» использует две собственно освоенных технологии производства – на основе монокристаллического выращенного кремния или арсенид-галлиевые с германиевой подложкой. Последние показывают максимально высокие характеристики и используются для снабжения ответственных объектов (АЗС, предприятия непрерывного цикла и т. д.)


Оба типа модулей можно выполнить на любом каркасе, от сетки и пленки до металлических (из анодированного алюминия) и струнных типов. Фотоэлектрические преобразователи могут быть:

  • с полированной поверхностью;
  • со встроенными диодами;
  • с алюминиевым зеркалом.

Вот основные энергетические характеристики ФЭП «Сатурн», в зависимости от типа:

Эти характеристики актуальны для носителей любых размеров: на предприятии «Сатурн» можно заказать как сборные модули на крышу коттеджа, так и миниатюрные солнечные панели для датчиков, преобразователей, изделий электротехники, а также аккумуляторные батареи. По прайсам вас сориентируют только в отделе продаж.

5. «Солнечный ветер» (Solar Wind)

Это предприятие расположено в Украине. В России существует аналогичное предприятие, которое выступает скорее в роли инвестора и реализатора. Solar Wind выпускает солнечные модули мощностью от 1 до 15 кВт/ч. В зависимости от назначения и мощности в модуль может входить от пары до нескольких десятков батарей. Так, батарея 1 000 Вт включает 5 модулей, один контроллер заряда на 30 А, аккумулятор 150 А/ч (2 шт. в наборе) и инвертор 1 200 В. Срок службы батареи составляет до 18 лет.


Совет: если вы покупаете оборудование Solar Wind для круглогодичного обеспечения жилого дома энергией, стоит брать не менее 10 кВт/ч.

Чтобы получить представление о возможностях фотоэлектрических систем «Солнечный ветер» (Украина) мощностью от 1 000 до 15 000 Вт, предлагаем сравнительную таблицу из расчета на 1 день потребления.

Мощность модуля, кВт/ч 1 3 5 10 15
Пример снабжения питанием различных систем (суммарно)
Лампочка (энергосберегающая, при работе 4 часа в день) 4 шт. по 11 Вт 10 шт. по 15 Вт 10 шт. по 20 Вт 20 шт. по 20 Вт 40 шт. по 20 Вт
Кондиционер Не хватит Не хватит Не хватит 1 час в день 3 часа в день
Ноутбук питанием 40 Вт/ч 4 часа 4 часа 4 часа 4 часа 4 часа
ТВ 50 Вт/ч, 3 часа в день 50 Вт/ч, 4 часа в день 150 Вт/ч, 4 часа в день 150 Вт/ч, 3 часа в день 150 Вт/ч, 4 часа в день
Антенна спутникового ТВ, 20 Вт/ч 3 часа в день 4 часа в день 4 часа в день 3 часа в день 3 часа в день
Холодильник Не хватит 100 Вт/ч, 24 часа в день 10 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день
Стиральная машина Не хватит 900 Вт/ч, 40 мин в день 900 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день
Пылесос, 900 Вт/ч Не хватит Не хватит 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу

6. Солнечные батареи «Квант»

НПП «Квант» первым предложило производство кремниевых солнечных батарей с 2-сторонней чувствительностью, а также монокристаллы арсенида галлия. Наиболее популярной моделью сегодня выступает «Квант КСМ» и ее модификация КСМ-180П. Стоимость такой батареи не превышает 18 000 руб., срок службы достигает 40 лет.


Однако приведем характеристики всех модулей. Их можно заказать как в моно-, так и в поликристалической вариации. Удельная энергетическая характеристика выше у монокристаллических панелей и достигает 200 Вт/кв.м. По сравнению с зарубежными аналогами «Квант» оптимален за счет низкой цены и относительно небольшого уменьшения КПД на протяжении всего срока службы.

Характеристика КСМ-80 КСМ-90 КСМ-100 КСМ-180 КСМ-190 КСМ-205
Мощность номинальная, Вт 80–85 90–95 98–103 180–185 190–195 205–210
Ток короткого замыкания, А 5,4–5,6 5,5–5,7 5,8–5,9 5,4–5,6 5,5–5,9 5,6–6,1
Напряжение холостого хода, В 21,2–21,5 22,2–22,4 22,8–23,0 34,8–36,6 35,1–37,2 35,9–37,8
Количество солнечных элементов 36 36 36 72 72 72
Габариты, мм 1210 × 547 × 35 1210 × 547 × 35 1210 × 547 × 35 1586 × 806 × 35 1586 × 806 × 35 1586 × 806 × 35
Коммутационная коробка, TUV IP66 IP66 IP66 IP66 IP66 IP66
Масса, кг 8,5 8,5 8,5 16 16 16
КПД, % 17,5 18,3 18,7 17,8 18,4 19,0

7. Sun Power – портативные солнечные панели

Компания Sun Power расположена в Украине и большей частью прославилась выпускаемыми перевозными солнечными комплексами. С их помощью можно получить электричество даже в походных условиях. Эти комплексы отличаются своей мобильностью, небольшими размерами и портативностью. Имеют выход USB и обладают мощностью до 500 Вт.


Другие характеристики портативных панелей Sun Power:

  • срок службы – до 30 лет;
  • имеет международную сертификацию CE RoHC;
  • новое поколение панелей может быть также интегрировано в фасад или крышу без потери эстетики.

Удобно использовать подобные решения в автономном освещении билбордов, дорог и участков, питании кемпингов и трейлеров, яхт и катеров.

8. «Квазар» – еще один украинский производитель

Компания «Квазар» выпускает широкий ассортимент фотовольтаического оборудования, в том числе солнечные панели и зарядные устройства. Солнечные батареи Kvazar изготавливаются из кремниевых кристаллов, выращенных на предприятии, и имеют усиленную алюминиевую базу. Гарантия качества, которая выдается производителем, немного настораживает – всего 10 лет. Однако электролюминесцентные и другие лабораторные тестирования подтверждают более длительный срок службы – до 25 лет.

Наш выбор: панели — KV175-200/24 M (монокристаллические), KV220-255M (также моно), KV210-240Р (вариант поли), в маркировке цифры указывают на мощность устройства.

Цена батарей – от 13 000 руб. (приблизительно) за 150 Вт. Кроме гелиопанелей «Квазар» выпускает фотоэлектрические преобразователи ячейками от 4 × 4 до 6 × 6 дюймов с КПД до 18,7 %.

9. ООО «Витасвет»

Московское предприятие ООО «Витасвет» выпускает одну базовую модель SSI-LS200 P3 в четырех вариациях мощности: от 225 до 240 Вт. Каждый модуль состоит из 60 кремниевых пластин типа мультикристалл и крепится на алюминиевый профиль.

Вот их основные параметры, полученные при испытаниях в нормальных условиях 800 Вт/кв.м:

Мощность батареи, Вт 225 230 235 240
Макс. напряжение, В 29,6 29,7 29,8 30,2
Ток короткого замыкания, А 8,1 8,34 8,41 8,44
КПД, % 13,5 13,8 14,1 14,5

Стоимость – 12 800 руб. за панель мощностью 240 Вт.

10. Завод «Термотрон» (г. Брянск)

Предприятие «Термотрон» производит автономные системы уличного освещения на солнечных батареях и мини-автономные солнечные станции. Первые поставляются на базе серийных модулей с высокой столбовой опорой.


Особенности автономных систем уличного освещения от «Термотрона»:

  • температурный диапазон эксплуатации – -40…+50 °C;
  • угол раскрытия луча – 135 на 90 градусов;
  • гарантированный срок работы – 12 лет в городских условиях;
  • высота опоры – от 6 до 11 м;
  • мощность – от 30 до 160 Вт.

Автономная станция «Экотерм», выпускаемая заводом, будет интересна владельцам загородных домов и участков. Ее применяют также на фермах, телефонных станциях, для оснащения сельских школ, больниц, магазинов. Станция работает от дизель-генератора 14,5 кВт. Цена вырабатываемой энергии при количестве 18 фотоперерабатывающих элементов – 5,12 руб./кВт, срок окупаемости – до 5 лет (цену станции уточнять у производителя).

Заключение


Мы провели обзор нескольких ведущих предприятий так называемой фотоэнергетики России и Украины, который, надеемся, даст первичное представление о целесообразности применения солнечных батарей и позволит принять верное решение. Это не все бренды, однако наиболее популярные и доступные в продаже таковы.

(Пока оценок нет)

Комфортность проживания в домах и квартирах современного человека с годами требует все большего количества электроэнергии. Но в современных условиях себестоимость каждой единицы электроэнергии неуклонно повышается, что, соответственно, сказывается и на затратах. Поэтому вопрос о переходе на альтернативные источники электроэнергии является наиболее актуальным. Одним из способов обеспечить независимость в получении электроэнергии является возможность применять для этих целей солнечные батареи для дома.

Эффективная альтернатива или всеобщее заблуждение?

Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».

Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно. Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, - чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%. Но это в идеале, а на практике все несколько иначе.

Следующий момент, на который стоит обратить внимание, - необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно.

Солнечная батарея - что это такое?

Устройство солнечной батареи основано на способности фотоэлементов преобразовывать солнечную энергию в электричество. Соединенные в общую систему, эти преобразователи создают многоячеистое поле, каждая ячейка которого под воздействием солнечной энергии становится источником электрического тока, который затем аккумулируется в специальных устройствах - аккумуляторах. Разумеется, что мощность такого устройства тем выше, чем больше данное поле. То есть чем больше в нем фотоэлементов, тем большее количество электроэнергии оно способно произвести.

Но это не значит, что только огромные площади, на которых возможна установка солнечных батарей, могут обеспечить необходимой электроэнергией. Существует множество гаджетов, которые имеют возможность работать не только от привычных всем автономных источников питания - батареек, аккумуляторов - но и использовать энергию солнца. В конструкции таких приборов вмонтированы портативные солнечные батареи, дающие возможность как подзаряжать устройство, так и работать автономно. Например, обычный карманный калькулятор: в солнечную погоду, положив его на стол, можно обеспечить подзарядку батареи, что продлевает срок ее службы на долгие годы. Существует масса различных устройств, где такие батареи используются: это и ручки-фонарики, и фонарики-брелоки и т. д.

На дачных и загородных участках в последнее время стало модным использовать для освещения фонарики на солнечных батареях. Экономичное и несложное устройство обеспечивает освещение вдоль садовых дорожек, на террасах и во всех необходимых местах, используя электроэнергию, накопленную в светлое время суток, когда светит солнце. Экономные лампы освещения способны расходовать эту энергию достаточно долгое время, что и обеспечивает большой интерес к таким устройствам. Освещение на солнечных батареях используется и в домах, коттеджах, а также подсобных помещениях.

Типы автономных солнечных батарей

Существует два типа преобразователей солнечной энергии, обусловленных устройством самой батареи, - пленочные и кремневые. К первому виду относятся тонкопленочные батареи, в которых преобразователи представляют собой пленку, изготовленную по особой технологии. Еще их называют полимерными. Такие батареи устанавливаются в любом доступном месте, но обладают несколькими недостатками: им нужно много места, низкий коэффициент полезного действия и при даже средней облачности их энергоэффективность падает на 20 процентов.

Кремневый тип солнечных батарей представлен монокристаллическими и поликристаллическими устройствами, а также аморфными кремниевыми панелями. Монокристаллические батареи состоят из множества ячеек, в которых встроены кремневые преобразователи, соединенные в общую схему и заполненные силиконом. Просты в эксплуатации, с высоким (до 22%) КПД, водонепроницаемые, легкие и гибкие, но для эффективной работы требуют прямого солнечного потока. Облачная погода может стать причиной полного прекращения выработки электроэнергии.

Поликристаллические батареи от монокристаллических отличаются количеством преобразователей, размещенных в каждой ячейке и установленных разнонаправленно, что обеспечивает их эффективную работу даже при рассеянном свете. Это наиболее распространенный вид батарей, которые применяются и в городских условиях, хотя их КПД несколько ниже, чем у монокристаллических.

Аморфные кремниевые источники питания, несмотря на свою низкую энергоэффективность - около 6%, тем не менее считаются более перспективными. Они поглощают солнечный поток в двадцать раз больше, чем кремниевые, и намного эффективнее в пасмурные дни.

Все это промышленные устройства, которые имеют свою - и в настоящее время не очень демократичную - цену. А возможно ли собирать солнечные батареи своими руками?

Общий принцип выбора и компоновки деталей для солнечных батарей

В связи с последними требованиями к производству электрической энергии, которые направлены на переход с традиционного сырья, используемого при его производстве, тема солнечных источников питания принимает все более практическое значение. Массовое производство элементов для создания собственной электрической сети уже предлагает потребителю различные варианты обеспечения автономной электроэнергией. Но пока еще стоимость автономного солнечного источника питания достаточна высока и недоступна для массового потребителя.

Но это не значит, что нельзя смастерить солнечные батареи своими руками. При этом просто необходимо определиться со способом сборки такого устройства. Или, приобретая отдельные элементы, компоновать их самостоятельно, или делать все составные части собственноручно.

Из чего, собственно, состоит система питания, основанная на преобразовании солнечной энергии в электрический ток? Основным, но не последним из ее элементов, является солнечная батарея, конструкция которой была рассмотрена выше. Вторым элементом в схеме является контроллер солнечной батареи, задача которого состоит в контроле зарядки аккумуляторных батарей электрическим током, полученным в солнечных батареях. Следующей частью домашней солнечной электростанции является батарея электрических аккумуляторов, в которой и накапливается электричество. И последним элементом «солнечной» электрической цепи будет инвертор, позволяющий полученное электричество небольшого вольтажа использовать для бытовых приборов, рассчитанных на 220 В.

Рассматривая каждый элемент домашней гелиоэлектростанции отдельно, можно увидеть, что каждый ее элемент может быть приобретен в розничной сети, на электронных аукционах и т. д. или собран собственноручно. И даже контроллер солнечной батареи своими руками можно изготовить - при наличии определенных навыков и теоретических знаний.

Теперь что касается задач, которые ставятся перед собственной электростанцией. Они просты и сложны одновременно. Простота их в том, что солнечная энергия используется для определенных целей: освещения, отопления или полного обеспечения потребностей жилища. Сложность - в правильном расчете требуемой мощности и соответствующем подборе комплектующих частей.

Начинаем собирать солнечную панель

Сейчас можно найти массу предложений о том, как и из чего можно собрать солнечные панели. Способов много, и выбрать можно по своему предпочтению. В данном материале рассматриваются базовые принципы, которые необходимо использовать, изготавливая солнечные батареи своими руками.

Прежде всего, нужно определиться с мощностью, которую необходимо получить, и решить, на каком напряжении будет работать сеть. Существует два варианта сетей на солнечной энергии - с постоянным током и переменным. Переменный ток более предпочтителен из-за возможности разнесения потребителей электроэнергии на значительное расстояние - более 15 метров. Это как раз для небольшого дома. Не вдаваясь глубоко в расчеты и отталкиваясь от опыта тех, кто уже пользуется солнечной энергией на своих дачах, можно с уверенностью говорить о том, что на широтах Москвы - а опускаясь южнее, эти показатели будут, естественно, выше - один квадратный метр солнечных панелей может производить до 120 ватт в час. Это если при сборке использовать поликристаллические элементы. Они более привлекательны по цене. А суммарную мощность вполне реально определить, сложив всю потребляемую мощность каждого отдельного электроприбора. Очень приблизительно можно сказать, что для семьи из 3-4 человек, требуется около 300 киловатт в месяц, которые могут быть получены от солнечных панелей в 20 кв. метров.

Также можно встретить описание сетей на солнечной энергии, использующих панели из 36 элементов. Каждая из панелей имеет мощность около 65 Ватт. Солнечная батарея для дачи или небольшого частного дома может состоять из 15 таких панелей, которые способны вырабатывать до 5 кВт в час общей электрической мощности, имея собственную мощность в 1 кВт.

Солнечные панели своими руками

А теперь о том, как сделать солнечную батарею. Первым, что придется приобрести, будет набор преобразующих пластин, количество которых зависит от мощности самодельной гелиоэлектростанции. Для одной батареи нужно будет 36 штук. Можно воспользоваться набором Solar Cells, а также приобрести поврежденные элементы или с дефектами - это скажется лишь на внешнем виде батареи. Если они рабочие, то на выходе получится почти 19 Вольт. Спаивать их нужно с учетом на расширение - оставляя зазор до пяти миллиметров между ними. Устройство солнечной батареи своими руками требует предельной внимательности при исполнении пайки фотопластинок. Если пластинки приобретались без проводников, то их необходимо напаивать вручную. Процесс сложный и ответственный. Если работа выполняется паяльником на 60 Вт, лучше всего последовательно с ним подключить простую стоваттную лампочку.

Схема солнечной батареи очень проста - каждая пластина спаивается с другими последовательно. Стоит отметить, что пластины очень хрупкие, и их спайку желательно проводить с использованием какого-нибудь каркаса. При распайке фотопластинок также необходимо помнить о том, что в цепь нужно вставить предохранительные диоды, предотвращающие разряд фотоэлементов при затемнении или снижении освещенности. Для этого шины половинок панели выводятся на клеммник, создавая среднюю точку. Эти диоды предотвращают также разряд аккумуляторов ночью.

Качество пайки - основное требование к безупречной работе солнечных батарей. Перед установкой подложки необходимо все места пайки протестировать. Выводить ток рекомендуется с использованием проводов малого сечения. Например, акустическим кабелем с силиконовой изоляцией. Все проводники необходимо закрепить герметиком.

Затем стоит определиться с поверхностью, на которую эти пластины будут крепиться. Вернее, с материалом для ее изготовления. Самым подходящим по характеристикам и легкодоступным является стекло, которое имеет максимальную пропускную способность светового потока по сравнению с оргстеклом или карбонатом.

Следующим шагом станет изготовление короба. Для этого используется алюминиевый уголок или деревянный брус. В каркас на герметик сажается стекло - желательно тщательное заполнение всех неровностей. Следует заметить, что герметик должен высохнуть полностью - во избежание загрязнения фотопластинок. Затем на стекло крепится готовый лист из спаянных фотоэлементов. Способ крепления может быть различный, но солнечные батареи для дома, отзывы о которых распространены, закреплялись в основном с помощью прозрачной эпоксидной смолы или герметика. Если эпоксидку наносят равномерно на всю поверхность стекла, после чего на нее помещают преобразователи, то герметиком крепят в основном на каплю посредине каждого элемента.

Для подложки используется различный материал, который также крепится на герметик. Это могут быть и древесно-стружечные плиты небольшой толщины или лист ДВП. Хотя можно, опять же, залить и эпоксидной смолой. Корпус батареи должен быть герметичным. Сделанная таким способом солнечная батарея своими руками, схема сборки которой оговаривалась выше, даст 18-19 Вольт, обеспечив зарядку 12-вольтового аккумулятора.

Можно ли сделать преобразователь солнечной энергии своими руками?

Мастеровые люди, обладающие обширными познаниями в электронике, могут сделать фотоэлементы для преобразования солнечной энергии в электрическую и самостоятельно. Для этого используются кремневые диоды, вернее их кристаллы, освобожденные из корпусов. Процесс этот трудоемкий, и начинать его или нет, каждый решает самостоятельно. Можно брать диоды, использующиеся в мостовых схемах выпрямителей напряжения и стабилизаторах - Д226, КД202, Д7 и др. Находящийся в этих диодах полупроводниковый кристалл при попадании на него солнечного света становится точно так же как и фотопластинка. Но добраться до него и при этом его не повредить - довольно сложный и кропотливый процесс.

Всем, кто решится заняться созданием элементов для преобразователя самостоятельно, стоит запомнить следующее - если удалось аккуратно разобрать и спаять батарею, состоящую всего из двадцати диодов марки КД202 по схеме из параллельно соединенных 5 групп, то можно получить напряжение около 2 В с током до 0,8 Ампера. Этой мощности хватит лишь на питание небольшого радиоприемника, имеющего в своей схеме всего один или два транзистора. Но чтобы из них получилась полноценная солнечная батарея для дачи, нужно очень сильно постараться. Огромный труд, большие площади, громоздкость конструкции делает это занятие бесперспективным. Но для маленьких приборов и гаджетов это вполне подходящая конструкция, которую могут сделать все, кто любит заниматься электротехникой.

Можно ли использовать светодиоды для солнечных панелей?

Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще - светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов - а это непрактично и неэкономично - толку никакого не будет.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

В первом варианте использование солнечной энергии для отопления происходит с помощью иной системы, нежели обычная электрическая сеть. Устройство для отопления дома, использующее солнечную энергию, называется гелиосистема и состоит из нескольких приборов. Основным рабочим устройством является вакуумный коллектор, который превращает солнечный свет в тепло. Он состоит из множества стеклянных трубок небольшого диаметра, в которые помещена жидкость с очень низким порогом нагрева. Нагреваясь, эта жидкость в дальнейшем передает свое тепло воде в баке-накопителе объемом не менее 300 литров воды. Затем эта нагретая вода подается на отопительные панели, выполненные из тонких медных труб, которые, в свою очередь, отдают полученное тепло, прогревая воздух в помещении. Вместо панелей можно, конечно, использовать и традиционные радиаторы, но эффективность их намного ниже.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70-80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

И все-таки это работает!

В конце концов, солнечные батареи, своими руками собранные энтузиастами, являются вполне реальными источниками питания. И если использовать в цепи 12-вольтные аккумуляторы с током не менее 800 А/час, оборудование по превращению напряжения из низкого в высокое - инверторы, а также контроллеры напряжения на 24 В с рабочим током до 50 Ампер и простой «бесперебойник» с током до 150 Ампер, то получится очень приличная электростанция, работающая на солнечных лучах, которая способна обеспечить потребности в электроэнергии жильцов частного дома. Естественно, при определенных погодных условиях.

Солнечная батарея – это несколько фотоэлементов, собранных в одном корпусе, снабжающих электричеством потребителя. Сами фотоэлементы с каждым днем становятся все доступнее, во многом благодаря тому, что их в хорошем качестве стал выпускать Китай.

Выбор фотоэлементов для солнечной батареи

  1. Поликристалл или монокристалл. Однозначного ответа нет, поликристаллические модули дешевле, но у них ниже энергоэффективность. Большинство промышленных производителей отдают предпочтение поликристаллическим фотоэлементам. В России ни те ни другие не производятся, следовательно делаем покупки на com или aliexpress.com.
  2. Размерность. Есть размеры 6х6(156 х 156 мм), 5х5 (127 127 мм), 6х2 (156 х 52 мм) дюйма. Следует брать последние. Дело в том, что все фотоэлементы очень тонкие и хрупкие, легко ломаются при монтаже, поэтому выгоднее сломать маленький фотоэлемент. Также, чем меньше размер одного элемента, тем легче заполнить площадь батареи.
  3. Припаянные контакты. Каждая пластина будет соединяться последовательно с другими, следовательно работать с паяльником придется много. Значительно облегчают эту работу припаянные контакты к панелям. Подключить такие контакты к общей шине будет гораздо проще. Если таких контактов нет, вам придется паять их самостоятельно.

Инструменты и материалы

Материалы:

  • Алюминиевый уголок 25х25;
  • Болты 5х10 мм – 8 шт;
  • Гайки 5 мм – 8 шт;
  • Стекло 5-6 мм;
  • Клей – герметик Sylgard 184;
  • Клей-герметик Ceresit CS 15;
  • Поликристаллические фотоэлементы;
  • Флюс фломастер (смесь канифоли и спирта);
  • Серебряная лента для подключения к фотоэлементам;
  • Лента для шины;
  • Припой (нужен тонкий, т.к. чрезмерный нагрев выведет из строя фотоэлемент);
  • Пенополиуретан (поролон), толщиной 3 см;
  • Плотная полиэтиленовая пленка 10 мкм.

Инструмент:

  • Напильник;
  • Ножовка по металлу с полотном 18;
  • Дрель, сверла на 5 и 6 мм;
  • Ключи рожковые;
  • Паяльник;

Пошаговая фотоинструкция

Максимально подробно рассказано, как своими руками собрать солнечную батарею из фотоэлементов на алюминиевом каркасе.

Сточить напильником углы на одной грани с каждой стороны алюминиевого угла под 45 градусов.


Обрезать уголки ножовкой по металлу под 45 градусов. Для удобства можно воспользоваться стуслом:



С каждой стороны уголка должна получиться вот такая конструкция:

Обрезанный алюминиевый уголок

Делаем скобы для соединения уголков:

Прикладываем уголки срезанными углами друг к другу
Перпендикулярно ставим уголок и на нем намечаем линию отреза Должно получиться 4 соединительных уголка

На сторонах каждой полученной скобы находим центр и сверлим отверстие, диаметром 6 мм:

Находим центр каждой стороны скобы
Отверстие в скобе

Делаем разметку через отверстие в каждой скобе на уголке. Чтобы потом не перепутать, помечаем каждый угол и каждую скобу цифрой:

Разметка отверстий «по месту»
Ставим цифры, чтобы потом не перепутать

Сверлим отверстия в уголке сверлом 5 мм, должно получиться так:

Отверстия в уголке

Собираем рамку с помощью болтов и гаек:

Вклеиваем с помощью герметика стекло в собранную рамку:

Силиконом следует обработать стыки снаружи и внутри

Обезжирить поверхность стекла изнутри и разложить фотоэлементы лицевой стороной вниз таким образом, чтобы контактные шины были параллельны:

Соедините между собой фотоэлементы скотчем, так они не распадутся при дальнейших операциях.

Соединить между собой элементы по схеме:

Схема соединения фотоэлементов в батарее

Собираем уплотняющую конструкцию:

  1. Из листа пенополиуретана вырезаем прямоугольник, меньше внутренней части рамки на 1 см с каждой стороны;
  2. Запаиваем получившийся прямоугольник в полиэтиленовую пленку с помощью скотча или паяльника

Конструкция укладывается внутрь рамки:

Поролон укладывается внутрь рамки

Рамка вместе с поролоном переворачивается и снимается. Остаются только уложенные и скрепленные между собой скотчем фотоэлементы:

Снять алюминиевую рамку
Фотоэлементы на поролоне

На всю поверхность фотоэлементов кистью наносится герметик Sylgard 184 и накрывается сверху рамкой со стеклом:

Герметик на фотоэлементах
Накрыть фотоэлементы рамкой со стеклом

Ставим груз на стекло на несколько часов, за это время должны удалиться пузыри воздуха:

Пузыри уходят за 2-3 часа

Через 12 часов снимаем груз и отрываем поролон. Батарея готова к подключению!

Ошибки при сборке солнечной батареи своими руками

Несколько характерных ошибок, совершаемых при самостоятельной сборке панелей, о которых хотелось бы предупредить.

  • Сборка на каркасе из дерева или ДСП. Солнечная батарея, собранная своими руками, окупается только если служит несколько лет, поэтому ненадежная конструкция из бруса для нее точно не подходит, т.к. разбухнет и потеряет форму через год – два. Конструкция получается громоздкой и тяжелой, плохо поддается транспортировке и переносу.
  • Небрежное хранение Sylgard 184. Если вы не расходуете всю банку этого клея, после использования его нужно переместить в меньшую тару, чтобы остатки не имели контакта с воздухом внутри нее. В противном случае, спустя полгода хранения весь клей может затвердеть.
  • Использование оргстекла. Батарея всегда находится на солнце (в этом её суть), поэтому сильно греется. Оргстекло очень плохо отводит тепло от фотоэлементов. Это снижает их эффективность. Каждый градус выше 25 °С снижает эффективность на 0,45%. Но это не главный минус оргстекла! При температуре больше 50 °С оно деформируется во всех плоскостях, разрывая контакты внутри схемы, разгерметизируя батарею и приводя ее в негодность.
  • Недостаточное внимание изолированию соединений. При сборке солнечных батарей для своего дома своими руками лучше использовать специальные коннекторы (MC4), соединяющие несколько панелей в единую сеть. Дело в том, что в дальнейшем, возможно, их придется демонтировать для ремонта, поворота в другую сторону, замены элементов и т.д. Скручивать контакты «намертво» или использовать для этой цели соединительные клеммы, которые предназначены для внутренних работ – не наилучший вариант.

Комментарии:

Похожие записи

Выгодно ли покупать комплектом солнечные батареи для дачи Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности Реальное применение тонкопленочных солнечных батарей Как выбрать солнечную панель - обзор важных параметров

Солнечная батарея - это устройство, которое позволяет генерировать электроэнергию с помощью специальных фотоэлементов. Оно помогает значительно снизить расходы на электричество и получить неисчерпаемый его источник. Такую установку можно не только купить в готовом виде, но и сделать своими руками. Солнечная панель для дома в частном секторе станет идеальным решением, которое поможет избежать частых перебоев со светом.

Общие сведения

Перед тем как сделать солнечную батарею в домашних условиях, необходимо подробно изучить её устройство, принцип действия, преимущества и недостатки. Владея этой информацией можно правильно подобрать нужные составляющие, которые будут долго работать и приносить пользу.

Устройство и принцип работы

Конструкции всех типов работают на основе преобразования энергии, излучаемой ближайшей звездой, в электрическую. Происходит это благодаря специальным фотоэлементам, которые объединяются в массив и формируют общую конструкцию. В качестве преобразователей энергии используются полупроводниковые элементы, изготавливаемые из кремния.

Принцип действия солнечной панели:

  1. Свет, идущий от Солнца, попадает на фотоэлементы.
  2. Он выбивает свободные электроны с последних орбит всех атомов кремния.
  3. Из-за этого появляется большое количество свободных электронов, которые начинают быстро и хаотично двигаться между электродами.
  4. Следствием этого процесса становится выработка постоянного тока.
  5. Затем он быстро преобразовывается в переменный и поступает в принимающее устройство.
  6. Оно распределяет полученную электроэнергию по всему дому.

Преимущества и недостатки

Солнечные панели, сделанные своими руками, обладают рядом преимуществ перед заводскими конструкциями и другими источниками энергии. Благодаря этому устройства быстро набирают популярность и используются по всему миру.

Среди положительных сторон солнечных панелей следует выделить такие:

Несмотря на большое количество преимуществ у солнечных панелей есть и недостатки. Их обязательно нужно брать во внимание перед началом изготовления конструкции и её монтажом.

К недостаткам относят следующее:

Для того чтобы готовая конструкция качественно выполняла свои функции и обеспечивала людей достаточным количеством электричества, необходимо правильно её изготовить. Для этого нужно учитывать много факторов и выбирать только высококачественные материалы.

Основные требования

Перед тем как своими руками сделать солнечную батарею, необходимо выполнить ряд подготовительных мероприятий и тщательно изучить все требования, предъявляемые к устройству. Это поможет получить работающую установку и упростить процесс её монтажа.

Чтобы солнечная панель работала на максимуме своих возможностей, необходимо соблюдать такие требования:

Материалы и инструменты

Наиболее важными деталями устройства считаются фотоэлементы. Производители предлагают покупателям только 2 их разновидности: из монокристаллического (КПД до 13%) и поликристаллического кремния (КПД до 9%).

Первый вариант подходит только для работы в солнечную погоду, а второй - в любую. Другими важными элементами конструкции являются проводники. Они используются для соединения фотоэлементов друг с другом.

Для изготовления панели понадобятся такие материалы и инструменты:

Порядок действий

Для того чтобы сделать солнечные батареи своими руками в домашних условиях, необходимо соблюдать последовательность действий. Только в этом случае можно избежать ошибок и добиться желаемого результата.

Процесс изготовления панели прост и состоит из следующих этапов:

  1. Берётся набор поли- или монокристаллических фотоэлементов и детали собираются в общую конструкцию. Их количество определяется исходя из требований владельцев дома.
  2. На фотоэлементы наносятся контуры, образующиеся из олова припаянные проводники. Эта операция выполняется на ровной стеклянной поверхности при помощи паяльника.
  3. По заранее подготовленной электрической схеме соединяются друг с другом все ячейки. При этом обязательно нужно подключить шунтирующие диоды. Идеальным вариантом для солнечной батареи будет использование диодов Шоттки, предотвращающих разрядку панели в ночное время.
  4. Конструкция из ячеек перемещается на открытое пространство и тестируется на работоспособность. При отсутствии каких-либо проблем можно начинать сборку каркаса.
  5. Для этих целей используются специальные уголки из алюминия, которые крепятся к элементам корпуса при помощи метизов.
  6. На внутренние части реек наносится и равномерно распределяется тонкий слой силиконового герметика.
  7. Поверх него кладётся лист из плексигласа или поликарбоната и плотно прижимается к контуру рамы.
  8. Конструкция оставляется на несколько часов для полного высыхания силиконового герметика.
  9. Как только этот процесс завершился, прозрачный лист дополнительно крепится к корпусу при помощи метизов.
  10. Вдоль всей внутренней части получившейся поверхности помещаются выбранные фотоэлементы с проводниками. При этом важно оставлять небольшое расстояние (примерно 5 миллиметров) между соседними ячейками. Для упрощения этой процедуры можно заранее нанести необходимую разметку.
  11. Установленные ячейки надёжно фиксируются на раме с помощью монтажного силикона, а панель полностью герметизируется. Всё это поможет увеличить срок работы солнечной батареи.
  12. Изделие оставляется для высыхания нанесённой смеси и приобретает свой окончательный вид.

Изделия из подручных материалов

Солнечную батарею можно собрать не только из дорогостоящих материалов, но и из подручных. Готовая конструкция хоть и будет менее эффективной, но позволит немного сэкономить на электроэнергии.

Это один из самых простых и доступных вариантов изготовления самодельной солнечной панели. В основе устройства будут использоваться диоды небольшого вольтажа, которые изготовлены в стеклянном корпусе.

Делается батарея с соблюдением такой последовательности действий:

Медная фольга

Если нужно получить небольшое количество электроэнергии, то можно смастерить солнечную батарею из обыкновенной фольги.

Готовая конструкция будет обладать малой мощностью, поэтому применять её можно только для подпитки небольших устройств.

Пошаговая инструкция:

Пивные банки

Этот простой способ изготовления батареи не требует больших финансовых затрат. С его помощью можно получить малое количество электричества, которое немного уменьшит расходы.

Порядок действий:

Самостоятельно изготовленная солнечная панель - это замечательное устройство, которое позволяет снизить затраты на электроэнергию. При правильном его изготовлении и соблюдении всех рекомендаций можно смастерить качественное изделие, которое будет работать на протяжении многих лет.

Все началось с прогулки по сайту eBay -увидел солнечные панели и заболел.

Споры с друзьями об окупаемости были смешны…. Покупая автомобиль никто, не думает об окупаемости. Авто как любовница, готовь сумму на удовольствие заранее. А тут совсем наоборот, затратил деньги так они еще и пытаются окупиться… Кроме того, подключил к солнечным панелям инкубатор так они еще как оправдывают свое предназначение, предохраняя ваше будущее хозяйство от гибели. В общем, имея инкубатор, ты зависишь от многих факторов, тут либо пан, либо профан. Когда будет время, напишу о самодельном инкубаторе. Ну ладно чего рассуждать, каждый в праве выбирать…..!

После долгих ожиданий, заветная коробочка с тонкими хрупкими пластинками, наконец, греет руки и сердце.

Первым делом конечно Интернет … ну, не боги горшки обжигают. Опыт чужой всегда полезен. И тут наступило разочарование….. Как оказалось, своими руками панели сделали человек пять, остальные просто перекопировали на свои сайты, причем некоторые, дабы быть оригинальней скопированы с разных разработок. Ну да бог с ними пусть это остается на совести хозяев страничек.

Решил почитать форумы, долгие рассуждения теоретиков «как доить корову» привели в полное уныние. Рассуждения о том, как ломаются пластины от нагрева, трудности герметизации и т д. Почитал и плюнул на все это дело. Мы пойдем своим путем, методом проб и ошибок, опираясь на опыт «коллег», чего изобретать велосипед?

Ставим задачу:

1) Панель должна быть изготовлена из подручных материалов, дабы не тянуть кошелек, ибо неизвестен результат.

2) Процесс изготовления должен быть нетрудоемким.

Начинаем изготовление солнечной панели:

Первым делом были приобретены 2 стекла 86х66 см. для будущих двух панелей.

Стекло простое, приобретал у производителей пластиковых окон. А может и не простое…

Долгий поиск алюминиевых уголков, по опыту уже проверенному «коллегами» закончился ничем.

Потому процесс изготовления начинался вяло, с чувством долгостроя.

Процесс пайки панелей описывать не стану, так как в сети много информации про это и даже видео есть. Просто оставлю свои заметки и замечания.

Не так страшен черт, как его малюют.

Не смотря на трудности, которые описывают на форумах, пластины элементов паяются легко, как лицевая сторона, так и тыльная. Так же, вполне пригоден наш советский припой ПОС- 40, во всяком случае, никаких трудностей я не испытал. Ну и конечно, наша родная канифоль, куда без нее… За время пайки не сломал ни одного элемента, думаю надо быть полным идиотом, чтобы сломать их на ровном стекле.

Проводники, которые идут в комплекте к панелям, очень удобны, во-первых, они плоские, во-вторых, они луженные, что значительно сокращает время пайки. Хотя вполне можно использовать обычный провод, провел эксперимент на запасных пластинах, трудностей в пайке не испытал. (на фото остатки плоского провода)

На пайку 36 пластин у меня ушло около 2 часов. Хотя на форуме читал, что люди паяют по 2 дня.

Паяльник желательно использовать на 40 Вт. Так как пластины легко отводят тепло, а это затрудняет пайку. Первые попытки паять 25 Ватным паяльником были нудными и печальными.

Так же при пайке желательно оптимально подбирать количество флюса (канифоли). Ибо большой избыток ее не дает прилипнуть олову к пластине. А потому приходилось практически залуживать пластинку, в общем, ничего страшного, все поправимо. (приглядитесь на фото видно.)

Расход олова довольно большой.

Ну вот, на фото пропаянные элементы, во втором ряду косяк, не пропаян один вывод, но ничего главное заметил и исправил.

Окантовка стекла сделана двухсторонним скотчем далее на этот скотч будет приклеена полиэтиленовая пленка.

Скотчи, которые использовал.

После припайки, начало герметизации (скотч вам в помощь).

Ну вот, проклеенные пластины скотчем и исправленным косяком.

Далее с окантовки панели снимаем защитный слой двухстороннего скотча и приклеиваем на нее полиэтиленовую пленку с запасом на края. (сфоткать забыл) Ах да, в скотче проделываем прорези для отходящих проводов. Ну не глупые, поймете, что и когда… По краю стекла, а так же выводы проводов, углы, промазываем силиконовым герметикам.

И загибаем пленку на внешнюю сторону.

Предварительно было изготовлена рамка из пластика. Когда в доме устанавливал пластиковые окна, на окно шурупами крепят пластиковый профиль для подоконника. Посчитал, что эта часть слишком тонкая. А потому удалил и сделал подоконник по своему. Потому, от 12 окон остались пластиковые профили. Так сказать материал в избытке.

Рамку клеил обычным, старым, советским утюгом. Жаль, процесс не снимал, но думаю, ничего тут сверх непонятного нет. Отрезал под 45 градусов 2 стороны, нагрел на подошве утюга и приклеил предварительно установив на ровный угол. На фото рамка под вторую панель.

Устанавливаем стекло с элементами и защитной пленкой в рамку

Лишнюю пленку обрезаем, а края проклеиваем силиконовым герметикам.

Получаем вот такую панель.


Да, забыл написать, что кроме пленки к рамке приклеил направляющие, которые не дают упасть элементам, если скотч отклеиться. Пространство между элементами и направляющими залито монтажной пеной. Что позволило прижать плотнее элементы к стеклу.

Ну, начнем испытания.

Так как панель одну я изготовил заранее, результат одной мне известен Напряжение 21Вольт. Ток короткого замыкания 3,4 Ампера. Сила тока заряда аккумуляторной батареи 40А. ч 2,1 Ампера.

К сожалению не фоткал. Надо сказать, что сила тока круто зависит от освещенности.

Теперь соединенные параллельно 2 батареи.

Погода на момент изготовления была облачная, было около 4 часов дня.

Вначале меня это расстроило, а потом даже обрадовало. Ведь это самые усредненные условия для батареи, а значит результат правдоподобнее, чем при ярком солнце. Солнышко просвечивало через облака не так ярко. Надо сказать, что и светило солнышко немного сбоку.

При таком освещении ток короткого замыкания составил 7.12 Ампер. Что считаю превосходным результатом.

Напряжение без нагрузки 20,6 Вольт. Ну, это стабильно около 21 вольта.

Ток заряда АКБ 2,78Ампера. Что при таком освещении гарантирует заряд АКБ.

Замеры показали, при хорошем солнечном деньке результат будет лучше.

К тому времени погода ухудшалась, тучи закрыли, солнышко полностью и мне стало интересно, а что покажет при таком раскладе. Это же практически вечерние сумерки…

Небо выглядело так, специально снял линию горизонта. Да впрочем, на самом стекле батареи видно небо как в зеркало.

Напряжение при таком раскладе 20,2 вольта. Как уже говорилось 21в. это практически константа.

Ток короткого замыкания 2,48А. В общем, то, для такого освещения замечательно! Практически равен одной батареи при хорошем солнышке.

Ток заряда АКБ 1,85 Ампера. Ну что сказать… Даже в сумерки АКБ будет заряжаться.

Вывод построена солнечная батарея, не уступающая по характеристикам промышленным образцам. Ну а долговечность….., будем смотреть, время покажет.

Ах да, заряд батареи ведется через диоды Шоттки на 40 А. ну, что нашлось.

Так же хочу сказать про контроллеры. Все это красиво выглядит, но не стоит затраченных на контроллер денег.

Если вы дружите с паяльником, схемы очень просты. Делайте и получайте удовольствие от изготовления.

Ну вот, налетел ветер и оставшиеся запасные 5 элементов сорвались в неуправляемый полет….. результат осколки. Ну что поделать, безалаберность должна быть наказана. А с другой стороны…. Куда их?

Решили сделать из осколочков еще одну панельку, вольт на 5. На изготовление ушло 2 часа. Остатки материалов как раз пришлись в пору. Вот что получилось.

Замеры сделаны вечером.

Надо сказать, что при хорошем освещении сила тока короткого замыкания более 1 ампера.

Кусочки спаяны параллельно и последовательно. Цель, обеспечить примерно одинаковую площадь. Ведь сила тока равна самому маленькому элементу. А потому при изготовлении подбирайте элементы по площади освещения.

Настало время рассказать о практическом применении изготовленых мною солнечных батарей.

Весной установил две изготовленые панели на крыше, высота 8 метров под углом 35 градусов, оринтированые на юговосток. Такое орентирование было выбрано не случайно, потому как было замечено, что в данной широте, летом солнышко всходит в 4 утра и к 6-7 часам вполне сносно заряжает аккумуляторы током в 5-6 ампер, тоже касается и вечера. Каждая панель должна обязательно иметь свой диод. Дабы исключить выгорание элементов при отличающийся мощности панелей. И как следствие неоправданое снижение мощности панелей.
Спуск с высоты был выполнен многожильным проводом сечением 6мм2 каждая жила. Таким образом удалось достигнуть минимальных потерь в проводах.

В качестве накопителей энергии использованы старые еле-живые аккумуляторы 150А.ч,75А.ч,55А.ч, 60А.ч. Все аккумуляторы соеденены паралельно и учитывая потерю емкости, сумарно составляют ококло 100А.ч.
Контроллер заряда аккумулятора отсутствует. Хотя думаю установка контроллера необходима.Над схемой контроллера сечас работаю. Так как в течении дня аккумуляторы начинают кипеть. Потому приходится ежедневно сбрасывать излишки энергии, путем включения ненужной нагрузки. В моем случаее включаю освещение бани. 100 Вт. Так же в течении дня работает LCD телевизор примерно 105Вт, вентилятор 40Вт., а к вечеру добавляется энергосберегающая лампочка 20Вт.

Любителям проводить расчеты скажу: ТЕОРИЯ И ПРАКТИКА не одно и тоже. Так как такой "сендвичь" вполне прекрасно работает свыше 12 часов. при этом иногда заряжаем от него телефоны.Полного разряда аккумуляторов еще не достиг ни разу. Что соответственно перечеркивает расчеты.

В качестве преобразователя использован чуть- чуть переделаный для свободного пуска от аккумуляторов компьютерный бесперебойник (инвертор) 600В.А, что примерно соответствует нагрузке в 300Вт.
Так же хочу отметить, что батареи заряжаются и при яркой луне. При этом ток составляет 0,5-1 Ампер, думаю для ночи это совсем неплохо.

Конечно хотелось бы увеличить нагрузку, но для этого требуется мощьный инвертор. Планирую изготовить инвернтор сам по ниже приведенной схеме. Так как покупать инвертор за бешаные деньги НЕРАЗУМНО!