Пьезометрический график тепловой сети. Эксплуатация тепловых сетей Располагаемый напор в точке подключения вентиляции

«Конкретизация показателей количества и качества коммунальных ресурсов в современных реалиях ЖКХ»

КОНКРЕТИЗАЦИЯ ПОКАЗАТЕЛЕЙ КОЛИЧЕСТВА И КАЧЕСТВА КОММУНАЛЬНЫХ РЕСУРСОВ В СОВРЕМЕННЫХ РЕАЛИЯХ ЖКХ

В.У. Харитонский, начальник Управления инженерных систем

А. М. Филиппов, заместитель начальника Управления инженерных систем,

Государственная жилищная инспекция г. Москвы

Документы, регламентирующие показатели количества и качества коммунальных ресурсов, подаваемых бытовым потребителям, на границе ответственности ресурсоснабжающей и жилищной организации на сегодняшний день не разработаны. Специалисты Мосжилинспекции в дополнение к существующим требованиям предлагают конкретизировать на вводе в здание значения параметров систем тепло- и водоснабжения, в целях соблюдения в жилых многоквартирных домах качества коммунальных услуг.

Обзор действующих правил и нормативов по технической эксплуатации жилищного фонда в области жилищно-коммунального хозяйства показал, что в настоящее время строительные, санитарные нормы и правила, ГОСТ Р 51617 -2000* «Жилищно-коммунальные услуги», «Правила предоставления коммунальных услуг гражданам», утвержденные Постановлением Правительства РФ от 23.05.2006 года № 307 , и другие действующие нормативные документы рассматривают и устанавливают параметры и режимы только на источнике (ЦТП, котельная, водоподкачивающая насосная станция), вырабатывающем коммунальный ресурс (холодную, горячую воду и тепловую энергию), и непосредственно в квартире у жителя, где предоставляется коммунальная услуга. Однако они не учитывают современные реалии разделения жилищно-коммунального хозяйства на жилые здания и объекты коммунального назначения и сложившиеся границы ответственности ресурсоснабжающей и жилищной организации, которые являются предметом бесконечных споров при определении виновной стороны по факту непредоставления услуги населению или предоставления услуги ненадлежащего качества. Таким образом, сегодня не существует документа, регламентирующего показатели количества и качества на вводе в дом, на границе ответственности ресурсоснабжающей и жилищной организации.

Тем не менее, анализ проведенных Мосжилинспекцией проверок качества поставляемых коммунальных ресурсов и услуг показал, что положения федеральных нормативных правовых актов в области жилищно-коммунального хозяйства возможно детализировать и конкретизировать применительно к многоквартирным домам, что позволит установить взаимную ответственность ресурсоснабжающих и управляющих жилищных организаций. Следует отметить, что качество и количество коммунальных ресурсов, поставляемых на границу эксплуатационной ответственности ресурсоснабжающей и управляющей жилищной организации, и коммунальных услуг жителям определяется и оценивается по показаниям, в первую очередь, общедомовых приборов учета, установленных на вводах

систем тепло- и водоснабжения в жилые дома, и автоматизированной системы контроля и учета энергопотребления.

Таким образом, Мосжилинспекция, исходя из интересов жителей и многолетней практики, в дополнение к требованиям нормативных документов и в развитие положений СНиП и СанПин применительно к условиям эксплуатации, а также в целях соблюдения в жилых многоквартирных домах качества коммунальных услуг, предоставляемых населению, предложила регламентировать на вводе систем тепло- и водоснабжения в дом (на узле учета и контроля) следующие нормативные значения параметров и режимов, фиксируемых общедомовыми приборами учета и автоматизированной системой контроля и учета энергопотребления:

1) для системы центрального отопления (ЦО):

Отклонение среднесуточной температуры сетевой воды, поступившей в системы отопления, должно быть в пределах ±3 % от установленного температурного графика. Среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5 %;

Давление сетевой воды в обратном трубопроводе системы ЦО должно быть не менее, чем на 0,05 МПа (0,5 кгс/см 2) выше статического (для системы), но не выше допустимого (для трубопроводов, отопительных приборов, арматуры и иного оборудования). В случае необходимости, допускается установка регуляторов подпора на обратных трубопроводах в ИТП систем отопления жилых зданий, непосредственно присоединенных к магистральным тепловым сетям;

Давление сетевой воды в подающем трубопроводе систем ЦО должно быть выше требуемого давления воды в обратных трубопроводах на величину располагаемого напора (для обеспечения циркуляции теплоносителя в системе);

Располагаемый напор (перепад давления между подающим и обратным трубопроводами) теплоносителя на вводе тепловой сети ЦО в здание должен поддерживаться теплоснабжающими организациями в пределах:

а) при зависимом присоединении (с элеваторными узлами) - в соответствии с проектом, но не менее 0,08 МПа (0,8 кгс/см 2);

б) при независимом присоединении - в соответствии с проектом, но не менее, чем на 0,03 Мпа (0,3 кгс/см2) больше гидравлического сопротивления внутридомовой системы ЦО.

2) Для системы горячего водоснабжения (ГВС):

Температура горячей воды в подающем трубопроводе ГВС для закрытых систем в пределах 55-65 °С, для открытых систем теплоснабжения в пределах 60-75 °С;

Температура в циркуляционном трубопроводе ГВС (для закрытых и открытых систем) 46-55 °С;

Среднее арифметическое значение температуры горячей воды в подающем и циркуляционном трубопроводах на вводе системы ГВС во всех случаях должна быть не ниже 50 °С;

Располагаемый напор (перепад давлений между подающим и циркуляционным трубопроводами) при расчетном циркуляционном расходе системы ГВС должен быть не ниже 0,03-0,06 МПа (0,3-0,6 кгс/см 2);

Давление воды в подающем трубопроводе системы ГВС должно быть выше давления воды в циркуляционном трубопроводе на величину располагаемого напора (для обеспечения циркуляции горячей воды в системе);

Давление воды в циркуляционном трубопроводе систем ГВС должно быть не менее, чем на 0,05 МПа (0,5 кгс/см 2) выше статического (для системы), но не превышать статическое давление (для наиболее высоко расположенного и высокоэтажного здания) более чем на 0,20 Мпа (2 кгс/см2).

При данных параметрах в квартирах у санитарных приборов жилых помещений, в соответствии с нормативными правовыми актами Российской Федерации, должны быть обеспечены следующие значения:

Температура горячей воды не ниже 50 °С (оптимальная - 55 °С);

Минимальный свободный напор у санитарных приборов жилых помещений верхних этажей 0,02-0,05 МПа (0,2-0,5 кгс/см 2);

Максимальный свободный напор в системах горячего водоснабжения у санитарных приборов верхних этажей не должен превышать 0,20 МПа (2 кгс/см 2);

Максимальный свободный напор в системах водоснабжения у санитарных приборов нижних этажей не должен превышать 0,45 МПа (4,5 кгс/см 2).

3) Для системы холодного водоснабжения (ХВС):

Давление воды в подающем трубопроводе системы ХВС должно быть не менее чем на 0,05 МПа (0,5 кгс/см 2) выше статического (для системы), но не превышать статическое давление (для наиболее высоко расположенного и высокоэтажного здания) более чем на 0,20 Мпа (2 кгс/см 2).

При данном параметре в квартирах, в соответствии с нормативными правовыми актами Российской Федерации, должны быть обеспечены следующие значения:

а) минимальный свободный напор у санитарных приборов жилых помещений верхних этажей 0,02-0,05 МПа (0,2-0,5 кгс/см 2);

б) минимальный напор перед газовым водонагревателем верхних этажей не менее 0,10 Мпа (1 кгс/см 2);

в) максимальный свободный напор в системах водоснабжения у санитарных приборов нижних этажей не должен превышать 0,45 МПа (4,5 кгс/см 2).

4) Для всех систем:

Статическое давление на вводе в системы тепло- и водоснабжения должно обеспечивать заполнение водой трубопроводов систем ЦО, ХВС и ГВС, при этом статическое давление воды должно быть не выше допустимого для данной системы.

Значения давления воды в системах ГВС и ХВС на вводе трубопроводов в дом должны находиться на одном уровне (достигается посредством настройки автоматических устройств регулирования теплового пункта и/или насосной станции), при этом предельно допустимая разница давлений должна быть не более 0,10 МПа (1 кгс/см 2).

Данные параметры на вводе в здания должны обеспечивать ресурсоснабжающие организации путем выполнения мероприятий по автоматическому регулированию, оптимизации, равномерному распределению тепловой энергии, холодной и горячей воды между потребителями, а для обратных трубопроводов систем - также и управляющие жилищные организации путем осмотров, выявления и устранения нарушений или переоборудований и проведения наладочных мероприятий инженерных систем зданий. Указанные мероприятия следует проводить при подготовке тепловых пунктов, насосных станций и внутриквартальных сетей к сезонной эксплуатации, а также в случаях нарушений указанных параметров (показателей количества и качества коммунальных ресурсов, поставляемых на границу эксплуатационной ответственности).

При несоблюдении указанных значений параметров и режимов ресурсоснабжающая организация обязана незамедлительно принять все необходимые меры для их восстановления. Кроме того, в случае нарушения указанных значений параметров поставленных коммунальных ресурсов и качества предоставляемых коммунальных услуг необходимо произвести перерасчет платы за предоставленные коммунальные услуги с нарушением их качества.

Таким образом, соблюдение данных показателей обеспечит комфортное проживание граждан, эффективное функционирование инженерных систем, сетей, жилых домов и объектов коммунального назначения, обеспечивающих тепло- и водоснабжение жилищного фонда, а также поставку коммунальных ресурсов в необходимом количестве и нормативного качества на границы эксплуатационной ответственности ресурсоснабжающей и управляющей жилищной организации (на вводе инженерных коммуникаций в дом).

Литература

1. Правила технической эксплуатации тепловых энергоустановок.

2. МДК 3-02.2001 . Правила технической эксплуатации систем и сооружений коммунального водоснабжения и канализации.

3. МДК 4-02.2001 . Типовая инструкция по технической эксплуатации тепловых систем коммунального теплоснабжения.

4. МДК 2-03.2003 . Правила и нормы технической эксплуатации жилищного фонда.

5. Правила предоставления коммунальных услуг гражданам.

6. ЖНМ-2004/01. Регламент подготовки к зимней эксплуатации систем тепло- и водоснабжения жилых домов, оборудования, сетей и сооружений топливно-энергетического и коммунального хозяйств г. Москвы.

7. ГОСТ Р 51617 -2000*. Жилищно-коммунальные услуги. Общие технические условия.

8. СНиП 2.04.01 -85 (2000). Внутренний водопровод и канализация зданий.

9. СНиП 2.04.05 -91 (2000). Отопление, вентиляция и кондиционирование.

10. Методика проверки нарушения количества и качества предоставляемых услуг населению по учету потребления тепловой энергии, расхода холодной, горячей воды в г. Москве.

(Журнал «Энергосбережение» № 4, 2007)

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

Q[КВт] = Q[ГКал]*1160;Перевод нагрузки из Гкал в КВт

G[м3/час] = Q[КВт]*0.86/ Δ T ; где Δ T – разница температур между подачей и обраткой.

Пример:

Температура подачи от тепловых сетей Т1 – 110 ˚ С

Температура подачи от тепловых сетей Т2 – 70 ˚ С

Расход нагревающего контура G = (0,45*1160)*0,86/(110-70) = 11,22м3/час

А вот для нагреваемого контура с температурным графиком 95/70, расход будет уже совсем другим: = (0,45*1160)*0,86/(95-70) = 17,95м3/час.

Отсюда можно сделать вывод: чем меньше температурный напор (разность температур между подачей и обраткой), тем больше необходим расход теплоносителя.

Подбор циркуляционных насосов.

При подборе циркуляционных насосов систем отопления, ГВС, вентиляции, необходимо знать характеристики системы: расход теплоносителя,

который необходимо обеспечить и гидравлическое сопротивление системы.

Расход теплоносителя:

G[м3/час] = Q[КВт]*0.86/ Δ T ; где Δ T – разница температур между подачей и обраткой;

Гидравлическое сопротивление системы должны предоставить специалисты, которые рассчитывали саму систему.

Например:

считаем систему отопления с температурным графиком 95 ˚ С /70 ˚ С и нагрузкой 520 КВт

G[м3/час] =520*0.86/ 25 = 17,89 м3/час ~ 18 м3/час;

Сопротивление системы отопления составило ξ = 5 метров ;

В случае независимой системы отопления, нужно понимать, что к этому сопротивлениюв 5 метров добавится сопротивление теплообменника. Для этого нужно посмотреть его расчёт. Для примера, пусть это значение составит 3 метра. Итак, получается суммарное сопротивление системы: 5+3 = 8 метров.

Теперь вполне можно подобрать циркуляционный насос с расходом 18 м3/час и напором 8 метров .

Например вот такой:

В данном случае, насос подобран с большим запасом, он позволяет обеспечить рабочую точку расход/напор на первой скорости своей работы. Если по какой-либо причине, этого напора окажется недостаточно, насос возможно «разогнать» до 13 метров на третьей скорости. Оптимальным вариантом считается вариант насоса, который поддерживает свою рабочую точку на второй скорости.

Так же вполне возможно вместо обыкновенного насоса с тремя или одной скоростью работы поставить насос со встроенным частотным преобразователем, например такой:

Этот вариант исполнения насоса, конечно же, наиболее предпочтителен, поскольку позволяет наиболее гибко производить настройку рабочей точки. Единственным недостатком является стоимость.

Так же необходимо помнить о том, что для циркуляции систем отопления необходимо предусматривать два насоса в обязательном порядке (основной/резервный), а для циркуляции линии ГВС вполне возможно поставить один.

Система подпитки. Подбор насоса системы подпитки.

Очевидно, что насос подпитки необходим лишь в случае применения независимых систем, в частности отопления, где греющий и нагреваемый контур

разделены теплообменником. Сама система подпитки необходима для поддержания постоянного давления во вторичном контуре на случай возможных утечек

в системе отопления, а также для заполнения самой системы. Сама система подпитки состоит из прессостата, соленойдного клапана, расширительного бака.

Насос подпитки устанавливается лишь в том случае, когда давления теплоносителяв обратке не хватает для заполнения системы (не позволяет пьезометр).

Пример:

Давление обратного теплоносителя от теплосетей Р2 = 3 атм.

Высота здания с учётом тех. Подполья = 40 метров.

3атм. = 30 метров;

Необходимая высота = 40 метров + 5 метров (на излив) = 45 метров;

Дефицит напора = 45 метров – 30 метров = 15 метров = 1,5 атм.

Напор насоса подпитки понятен, он должен составлять 1,5 атмосферы.

Как определить расход? Расход насоса принимается в размере 20% от объёма системы отопления.

Принцип работы системы подпитки следующий.

Прессостат (устройство для измерения давления с релейным выходом) измеряет давление обратного теплоносителя в системе отопления и имеет

предварительную настройку. Для данного конкретного примера эта настройка должна составлять приблизительно 4,2 атмосферы с гистерезисом 0.3.

При падении давления в обратке системы отопления до 4,2 атм., прессостат замыкает свою группу контактов. Тем самым подаёт напряжение на соленойдный

клапан (открытие) и насос подпитки (включение).

Подпиточный теплоноситель подаётся до тех пор, пока давление не повысится до значения 4,2 атм + 0,3 = 4,5 атмосфер.

Расчёт регулирующего клапана на кавитацию.

При распределении располагаемого напора между элементами теплового пункта, необходимо учитывать возможность кавитационных процессов внутри тела

клапана, которые с течением времени будут его разрушать.

Максимально допустимый перепад давления на клапане можно определить по формуле:

ΔP max = z*(P1 − Ps) ; бар

где: z – коэффициент начала кавитации, публикуется в технических каталогах по подбору оборудования. У каждого производителя оборудования он свой, но среднее значение обычно в диапазоне 0,45-06.

Р1 – давление перед клапаном, бар

Рs – давление насыщение водяного пара при заданной температуре теплоносителя, бар,

к оторое определяется по таблице:

Если расчётный перепад давления использованный для подбора Kvs клапана не более

ΔP max , кавитация возникать не будет.

Пример:

Давлениеперед клапаном Р1 = 5 бар;

Температура теплоносителя Т1 = 140С;

Z клапана по каталогу = 0,5

По таблице, для температуры теплоносителя в 140С определяем Рs = 2,69

Максимально допустимый перепад давления на клапане составит:

ΔP max = 0,5*(5 - 2,69) = 1,155 бар

Более этого перепада терять на клапане нельзя – начнётся кавитация.

А вот если температура теплоносителя была бы ниже, например 115С, что более приближено к реальным температурам тепловой сети, максимальный перепад

давления был бы больше:ΔP max = 0,5*(5 – 0,72) = 2,14 бар.

Отсюда можно сделать вполне очевидный вывод: чем больше температура теплоносителя, тем меньший перепад давления возможен на регулирующем клапане.

Для того чтобы определить скорость потока. Проходящего через трубопровод, достаточно воспользоваться формулой:

;м/с

G – расход теплоносителя через клапан, м3/час

d – условный диаметр выбранного клапана, мм

Необходимо учитывать тот факт, что скорость потока проходящего через участок трубопровода не должна превышать 1 м/сек.

Наиболее предпочтительна скорость потока в диапазоне 0,7 – 0,85 м/с.

Минимальная же скорость должна составлять 0,5 м/с.

Критерий выбора системы ГВС, как правило, определяется из технических условий на подключение: теплогенерирующая компания очень часто прописывает

тип системы ГВС. В случае, если тип системы не прописан, следует придерживаться простого правила: определение по соотношению нагрузок здания

на ГВС и отопление.

Если0.2 - необходима двухступенчатая система ГВС;

Соответственно,

ЕслиQгвс/Qотопления< 0.2 илиQгвс/Qотопления>1 ; необходима одноступенчатая система ГВС.

Сам принцип работы двухступенчатой системы ГВС основан на рекуперации тепла из обратки контура отопления:обратный теплоноситель контура отопления

проходит через первую ступень ГВС и подогревает холодную воду с 5С до 41…48С. При этом сам обратный теплоноситель контура отопления остывает до 40С

и уже холодным сливается в тепловую сеть.


Вторая же ступень ГВС догревает холодную воду с 41…48С после первой ступени до положенных 60…65С.

Преимущества двухступенчатой системы ГВС:

1) За счёт рекуперации тепла обратки контура отопления, в тепловую сеть поступает охлаждённый теплоноситель, что резко уменьшает вероятность перегрева

обратки. Этот момент крайне важен для теплогенерирующих компаний, в частности, тепловых сетей. Сейчас получает распространение проведение расчётовтеплообменников первой ступени ГВС на минимальную температуру в 30С, чтобы ещё более холодный теплоноситель сливался в обратку теплосети.

2) Двухступенчатая система ГВС более точно поддаётся регулированию температуры горячей воды, которая идёт на разбор потребителю и температурные колебания

на выходе из системы значительно меньше. Это достигается благодаря тому, что регулирующий клапан второй ступени ГВС, в процессе своей работы регулирует

только небольшую часть нагрузки, а не всю целиком.

При распределении нагрузок между первой и второй ступенями ГВС, очень удобно поступать следующим образом:

70% нагрузки – 1 ступень ГВС;

30% нагрузки – 2 ступень ГВС;

Что это даёт.

1) Поскольку вторая (регулируемая) ступень получается небольшой, то в процессе регулирования температуры ГВС, температурные колебания на выходе из

системы оказываются незначительными.

2) Благодаря такому распределению нагрузки ГВС, в процессе расчёта мы получаем равенство расходов и как следствие равенство диаметров в обвязке теплообменников.

Расход на циркуляцию ГВС должен составлять не менее 30% от расхода разбора ГВС потребителем. Это минимальная цифра. Для увеличения надёжности

системы и стабильности регулирования температуры ГВС, расход на циркуляцию можно увеличить до значения 40-45%. Это делается не только для поддержания

температуры горячей воды, когда нет разбора потребителем. Это делается для компенсации «просадки» ГВС в момент пикового разбора ГВС, поскольку расход

циркуляции будет поддерживать систему в момент заполнения объёма теплообменника холодной водой для нагрева.

Бывают случаи неправильного расчёта системы ГВС, когда вместо двухступенчатой системы, проектируют одноступенчатую. После монтажа такой системы,

в процессе пуско-наладки, специалист сталкивается с крайней нестабильностью работы системы ГВС. Здесь уместно даже говорить о неработоспособности,

которая выражается большими температурными колебаниями на выходе из системы ГВС с амплитудой в 15-20С от заданной уставки. Например, когда уставка

составляет 60С, то в процессе регулирования,температурные колебания происходят в диапазоне от 40 до 80С. В данном случае изменения настроек

электронного регулятора (ПИД – составляющие, время хода штока и т.п.)результата не дадут, поскольку принципиально не верно рассчитана гидравлика ГВС.

Выход здесь один: ограничивать расход холодной воды и максимально увеличивать циркуляционную составляющую ГВС. В этом случае, в точке смешения

меньшее количество холодной воды будет смешиваться с большим количеством горячей (циркуляционной) и система будет работать стабильней.

Таким образом,производится какая-то имитация двухступенчатой системы ГВС за счёт циркуляции ГВС.

В задачу гидравлического расчета входят:

Определение диаметра трубопроводов;

Определение падения давления (напора);

Определение давлений (напоров) в различных точках сети;

Увязка всех точек сети при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

По результатам гидравлического расчета можно решить следующие задачи.

1. Определение капитальных затрат, расхода металла (труб) и основного объема работ по прокладке тепловой сети.

2. Определение характеристик циркуляционных и подпиточных насосов.

3. Определение условий работы тепловой сети и выбора схем присоединения абонентов.

4. Выбор автоматики для тепловой сети и абонентов.

5. Разработка режимов эксплуатации.

a. Схемы и конфигурации тепловых сетей.

Схема тепловой сети определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя.

Удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика, поскольку потребители пара – как правило, промышленные потребители – находятся на небольшом расстоянии от источника тепла.

Более сложной задачей является выбор схемы водяных тепловых сетей вследствие большой протяженности, большого количества абонентов. Водяные ТС менее долговечны, чем паровые вследствие большей коррозии, больше чувствительны к авариям из-за большой плотности воды.

Рис.6.1. Однолинейная коммуникационная сеть двухтрубной тепловой сети

Водяные сети разделяют на магистральные и распределительные. По магистральным сетям теплоноситель подается от источников тепла в районы потребления. По распределительным сетям вода подается на ГТП и МТП и к абонентам. Непосредственно к магистральным сетям абоненты присоединяются очень редко. В узлах присоединения распределительных сетей к магистральным устанавливаются секционирующие камеры с задвижками. Секционирующие задвижки на магистральных сетях обычно устанавливаются через 2-3 км. Благодаря установке секционирующих задвижек уменьшаются потери воды при авариях ТС. Распределительные и магистральные ТС с диаметром меньше 700 мм делаются обычно тупиковыми. В случае аварий для большей части территории страны допустим перерыв в теплоснабжении зданий до 24 часов. Если же перерыв в теплоснабжении недопустим, необходимо предусматривать дублирование или закольцовку ТС.

Рис.6.2. Кольцевая тепловая сеть от трех ТЭЦ Рис.6.3. Радиальная тепловая сеть

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае получается кольцевая тепловая сеть с несколькими источниками питания. Подобная схема имеет более высокую надежность, обеспечивает передачу резервирующих потоков воды при аварии на каком-либо участке сети. При диаметрах магистралей, отходящих от источника тепла 700 мм и менее, обычно применяют радиальную схему тепловой сети с постепенным уменьшением диаметра трубы по мере удаления от источника и снижения присоединенной нагрузки. Такая сеть наиболее дешевая, но при аварии теплоснабжение абонентов прекращается.


b. Основные расчетные зависимости

Располагаемые перепад давления для создания циркуляции воды, Па, определяется по формуле

где ДPн - давление, создаваемое циркуляционным насосом или элеватором, Па;

ДPе - естественное циркуляционное давление в расчётном кольце за счёт охлаждения воды в трубах и отопительных приборах, Па;

В насосных системах допускается не учитывать ДPе, если оно составляет менее 10% от ДPн.

Располагаемый перепад давления на вводе в здание ДPр = 150 кПа.

Расчёт естественного циркуляционного давления

Естественное циркуляционное давление, возникающее в расчётном кольце вертикальной однотрубной системы с нижней разводкой, регулируемой с замыкающими участками, Па, определяется по формуле

где - среднее приращение плотности воды при понижении её температуры на 1 ?С, кг/(м3??С);

Вертикальное расстояние от центра нагрева до центра остывания

отопительного прибора, м;

Расход воды в стояке, кг/ч, определяется по формуле

Расчёт насосного циркуляционного давления

Величина, Па, выбирается в соответствии с располагаемой разностью давления на вводе и коэффициентом смешивания U по номограмме.

Располагаемая разность давления на вводе =150 кПа;

Параметры теплоносителя:

В тепловой сети ф1=150?С; ф2=70 ?С;

В системе отопления t1=95?C; t2=70?C;

Определяем коэффициент смешивания по формуле

µ= ф1 - t1 / t1 - t2 =150-95/95-70=2,2; (2.4)

Гидравлический расчёт систем водяного отопления методом удельных потерь давления на трение

Расчёт главного циркуляционного кольца

1) Гидравлический расчёт главного циркуляционного кольца выполняем через стояк 15 вертикальной однотрубной системы водяного отопления с нижней разводкой и тупиковым движением теплоносителя.

2) Разбиваем ГЦК на расчётные участки.

3) Для предварительного выбора диаметра труб определяется вспомогательная величина - среднее значение удельной потери давления от трения, Па, на 1 метр трубы по формуле

где - располагаемое давление в принятой системе отопления, Па;

Общая длина главного циркуляционного кольца, м;

Поправочный коэффициент, учитывающий долю местных потерь давления в системе;

Для системы отопления с насосной циркуляцией доли потери на местные сопротивления равны b=0,35, на трение b=0,65.

4) Определяем расход теплоносителя на каждом участке, кг/ч, по формуле

Параметры теплоносителя в подающем и обратном трубопроводе системы отопления, ?С;

Удельная массовая теплоёмкость воды, равная 4,187 кДж/(кг??С);

Коэффициент учета дополнительного теплового потока при округлении сверх расчётной величины;

Коэффициент учета дополнительных потерь теплоты отопительными приборами у наружных ограждений;

6) Определяем коэффициенты местных сопротивлений на расчётных участках (а их сумму записываем в таблицу 1) по .

Таблица 1

1 участок

Задвижка d=25 1шт

Отвод 90° d=25 1шт

2 участок

Тройник на проход d=25 1шт

3 участок

Тройник на проход d=25 1шт

Отвод 90° d=25 4шт

4 участок

Тройник на проход d=20 1шт

5 участок

Тройник на проход d=20 1шт

Отвод 90° d=20 1шт

6 участок

Тройник на проход d=20 1шт

Отвод 90° d=20 4шт

7 участок

Тройник на проход d=15 1шт

Отвод 90° d=15 4шт

8 участок

Тройник на проход d=15 1шт

9 участок

Тройник на проход d=10 1шт

Отвод 90° d=10 1шт

10 участок

Тройник на проход d=10 4шт

Отвод 90° d=10 11шт

Кран КТР d=10 3 шт

Радиатор РСВ 3 шт

11 участок

Тройник на проход d=10 1шт

Отвод 90° d=10 1шт

12 участок

Тройник на проход d=15 1шт

13 участок

Тройник на проход d=15 1шт

Отвод 90° d=15 4шт

14 участок

Тройник на проход d=20 1шт

Отвод 90° d=20 4шт

15 участок

Тройник на проход d=20 1шт

Отвод 90° d=20 1шт

16 участок

Тройник на проход d=20 1шт

17 участок

Тройник на проход d=25 1шт

Отвод 90° d=25 4шт

18 участок

Тройник на проход d=25 1шт

19 участок

Задвижка d=25 1шт

Отвод 90° d=25 1шт

7) На каждом участке главного циркуляционного кольца определяем потери давления на местные сопротивления Z, по, в зависимости от суммы коэффициентов местного сопротивления Уо и скорости воды на участке.

8) Проверяем запас располагаемого перепада давления в главном циркуляционном кольце по формуле

где - суммарные потери давления в главном циркуляционном кольце, Па;

При тупиковой схеме движения теплоносителя невязка потерь давления в циркуляционных кольцах не должна превышать 15%.

Гидравлический расчёт главного циркуляционного кольца сводим в таблицу 1 (приложение А). В результате получаем невязку потерь давления


Расчёт малого циркуляционного кольца

Выполняем гидравлический расчёт второстепенного циркуляционного кольца через стояк 8 однотрубной системы водяного отопления

1) Рассчитываем естественное циркуляционное давление за счёт остывания воды в отопительных приборах стояка 8 по формуле (2.2)

2) Определяем расход воды в стояке 8 по формуле (2.3)

3) Определяем располагаемый перепад давления для циркуляционного кольца через второстепенный стояк, который должен равняться известным потерям давлениям на участках ГЦК с поправкой на разность естественного циркуляционного давления во второстепенном и главном кольцах:

15128,7+(802-1068)=14862,7 Па

4) Находим среднее значение линейной потери давления по формуле (2.5)

5) По величине, Па/м, расходу теплоносителя на участке, кг/ч, и по предельно допустимым скоростям движения теплоносителя определяем предварительный диаметр труб dу, мм; фактические удельные потери давления R, Па/м; фактическую скорость теплоносителя V, м/с, по .

6) Определяем коэффициенты местных сопротивлений на расчётных участках (а их сумму записываем в таблицу 2) по .

7) На участке малого циркуляционного кольца определяем потери давления на местные сопротивления Z, по, в зависимости от суммы коэффициентов местного сопротивления Уо и скорости воды на участке.

8) Гидравлический расчёт малого циркуляционного кольца сводим в таблицу 2 (приложение Б). Проверяем гидравлическую увязку между главным и малым гидравлическими кольцами по формуле

9) Определяем требуемые потери давления в дроссельной шайбе по формуле

10) Определяем диаметр дроссельной шайбы по формуле

На участке требуется установить дроссельную шайбу диаметром внутреннего прохода Ду=5мм