Связанное и несвязанное регулирование. Одноконтурные и многоконтурные, связанные и несвязанные системы автоматического управления, прямое и непрямое регулирование. Пример системы каскадного регулирования


Структурная схема системы несвязного регулирования двухмерного объекта имеет вид:

Ошибка регулирования

Управляющее воздействие

Измеряемые регулируемые величины

Неизмеряемые выходы по основным каналам с передаточной функцией и

Регуляторы с передаточными функциями и

Используя дискретные передаточные функции регуляторов основных и перекрестных каналов, опишем систему несвязного регулирования:

Преобразуем систему (2.0) путем подстановки, получив уравнение связи выходов системы от ее входов

(2.2)

В первое уравнение вместо подставим правую часть второго уравнения:

(2.3)

Аналогично, при подстановке во второе уравнение вместо правой части первого уравнения, можно получить зависимость выхода от и .

Из уравнения (2.3) видно, что каждая регулируемая величина зависит и от первого входа системы , и от второго входа системы . Покажем, что устойчивость несвязанной системы в этом случае уменьшается. Для этого примем, что передаточные функции объекта по основным и перекрестным каналам равны между собой и равны между собой передаточные функции регуляторов.

Тогда уравнение (2.3) примет вид:

(2.4)

Если в объекте отсутствуют перекрестные связи, то выходная величина зависит только от задания в соответствии со следующим выражением:

В соответствии с критерием Найквиста, для того, чтобы замкнутая одноконтурная система была устойчива (если разомкнутая устойчива), необходимо, чтобы годограф АФЧХ разомкнутой системы не охватывал точку с координатами . Исходя из этого, в несвязной системе регулирования, если принять равным нулю, данный критерий будет тем же самым, с той только разницей, что координаты критической точки будут . Таким образом в несвязной системе регулирования сужается область устойчивого регулирования, что уменьшает устойчивость системы и ухудшает качество переходного процесса. Если при расчете оптимальных настроек регулятора в системе несвязного регулирования не учитывать внутренние перекрестные связи, то система может быть неустойчивой. Для сохранения устойчивости системы несвязного регулирования при наличии внутренних связей приходится уменьшать коэффициент усиления по сравнению с коэффициентами усиления регуляторов при отсутствии перекрестных связей на столько, чтобы годограф АФЧХ разомкнутой системы не охватывал точку с координатами .

Очевидно, что это может быть достигнуто путем значительного достижения коэффициента усиления регулятора, т.е. скорости действия регулятора, что резко ухудшает качество регулирования. Поэтому при сильных внутренних связях возможность получить высокое качество регулирования необходимо искать не в корректировке структур и настроек несвязанных между собой регуляторов, а «развязывая» внутренние связи по перекрестным каналам. Т.е. необходимо менять структуру самой системы. Ослабить или полностью «развязать» перекрестные связи можно двумя способами:

1. выбирая в качестве регулируемых величин несвязанные или слабо связанные между собой параметры;

2. создание системы связанного регулирования, путем введения в АСР дополнительных внешних компенсирующих связей между регуляторами

Система несвязанного регулирования проще, надежнее и дешевле систем связного регулирования. Они реализуемы даже в тех случаях, когда системы связного регулирования технически неосуществимы. Однако, они восприимчивы к возмущающим воздействиям, распространяются по основным и перекрестным каналам, что может привести к ухудшению качества регулирования и, как наилучший вариант, потере устойчивости. Преимущества систем несвязного регулирования заставляет искать пути распространения области их применения на объекты, с взаимосвязанными регулируемыми величинами с сохранением удовлетворяющего качества регулирования. Степень связи двух регулируемых величин можно определить, используя передаточные функции объекта по основным и перекрестным каналам. Степень связи по первому основному каналу равна отношению его передаточной функции к передаточной функции второго основного канала: . Степень связи по второму перекрестному каналу равна отношению передаточной функции этого канала к передаточной функции первого основного канала: . Общая степень связи между регулирующими величинами: . В зависимости от величины общей степени связи можно рекомендовать один из следующих вариантов регулирования:

При таком соединении регуляторов основными станут каналы и ,общая степень связи будет характеризоваться новым значением . Если окажется, что общая степень связи значений меньше 1, то может быть применена система несвязного регулирования;

3. при соотношении , степень связи существенна, что может значительно уменьшить устойчивость системы несвязного регулирования; в этом случае необходимо устранить или существенно ослабить внутренние связи в АСР;

4. «развязать» регулирование величин при наличии перекрестных связей можно, если осуществляется регулирование величин с различными динамическими характеристиками, что уменьшает их взаимосвязь через процесс, например, регуляторы давления работаю обычно на более высоких частотах, чес регуляторы температуры, что определяет их слабое взаимное влияние друг на друга.

Подходы к настройке несвязной системы регулирования могут быть следующими:

1. настройка в одноконтурных системах;

2. одновременная оптимизация регуляторов в системе несвязного регулирования с учетом влияния основных и переходных каналов.

При первом подходе используются модели основных каналом и соответствующие регуляторы. Из них составляются одноконтурные системы регулирования, в которых проводится настройка соответствующих регуляторов одним из численных методов. Достоинством данного подхода к настройке регуляторов является простота и высокая скорость.

Из системы уравнений взаимосвязи выходов объекта ( и ) и входов системы ( и ) (2.3), (2.4) следует, что регулируемая величина зависит не только от динамических свойств основного канала и регулятора , но и от динамических свойств второго основного канала , перекрестных каналов , и от второго регулятора . Аналогично и параметр . Поэтому настройку управляющей части системы необходимо вести с учетом динамических свойств не только соответствующего основного канала, но и с учетом влияния динамики перекрестных каналов. Поэтому недостатком этого подхода к настройке регуляторов является неоптимальность получаемых настроечных параметров.

Рассмотрим второй подход. Расчет переходного процесса в системе несвязного регулирования осуществляется по следующей системе конечно-разностных уравнений:

, где весовые коэффициенты, для которых выполняются следующие условия:

Показатели качества по соответствующему выходу системы, использующиеся в качестве критериев оптимизации. Больший из весовых коэффициентов присваивается показателю качества того выхода, регулирование которого является наиболее важным.

При использовании свертки задача оптимизации формируется следующим образом: . При использовании в качестве численного метода оптимизации метода градиента алгоритм оптимизации (схема алгоритма) будет таким же, как и для одноконтурной системы. Разница будет заключаться в том, что при расчете переходного процесса будет использоваться система уравнений (3.0) и начальными условиями (3.1). При расчете частных производных критерия по оптимальным настройкам может быть использован один из двух рассмотренных выше подходов (с использованием квазианалитических рекуррентных зависимостей и без них). При использовании конечно-разностных уравнений необходимо взять частные производные от всех уравнений системы (3.0) по всем настройкам обоих регуляторов. Начальные условия для расчета численных значений полученной системы конечно-разностных уравнений необходимо задать аналогично начальным условиям (3.1).

Регулирование – это искусственное изменение параметров и расхода теплоносителя в соответствии с фактической потребностью абонентов. Регулирование повышает качество теплоснабжения, сокращает перерасход топлива и тепла.

В зависимости от пункта осуществления различают:

1. центральное регулирование – осуществляется на источнике тепла (ТЭЦ, котельной);

2. групповое – на ЦТП или КРП,

3. местное – на ИТП,

4. индивидуальное – непосредственно на теплопотребляющих приборах.

Когда нагрузка однородна, можно ограничиться одним центральным регулированием. Центральное регулирование ведется по типовой тепловой нагрузке, характерной для большинства абонентов района. Такой нагрузкой может быть как один вид нагрузки, например отопление, так и два разных вида при определенном их количественном соотношении, например отопление и горячее водоснабжение при заданном отношении расчетных значений этих нагрузок.

Различают присоединение систем отопления и установок горячего водоснабжения по принципу связанного и несвязанного регулирования.

При несвязанном регулировании режим работы системы отопления не зависит от отбора воды на горячее водоснабжение, что достигается установкой регулятора перед системой отопления. В этом случае суммарный расход воды на абонентскую установку равен сумме расходов воды на отопление и горячее водоснабжение. Завышенный расход воды в подающей магистрали тепловой сети приводит к увеличению капитальных и эксплуатационных затрат в тепловые сети, увеличению капитальных и эксплуатационных затрат в тепловые сети, увеличению расхода электроэнергии на транспорт теплоносителя.

Связанное регулирование позволяет снизить суммарный расход воды в тепловых сетях, что достигается установкой регулятора расхода на вводе абонентской установки и поддержанием расхода сетевой воды на вводе постоянным. В этом случае при увеличении отбора воды на горячее водоснабжение будет снижаться расход сетевой воды на систему отопления. Недотоп в период максимального водоразбора компенсируется увеличением расхода сетевой воды на систему отопления в часы минимального водоразбора.

Присоединение абонентских установок по принципу несвязанного регулирования применяется при центральном качественном регулировании по отопительной нагрузке, по принципу связанного регулирования – при центральном регулировании по совмещенной нагрузке.

Для закрытых систем теплоснабжения при преобладающей (более 65%) жилищно-коммунальной нагрузке и при соотношении (15) применяется центральное качественное регулирование закрытых систем по совместной нагрузке отопления и горячего водоснабжения. При этом присоединение подогревателей горячего водоснабжения не менее чем у 75% абонентов должно быть выполнено по двухступенчатой последовательной схеме.

Температурный график центрального качественного регулирования по совместной нагрузке отопления и горячего водоснабжения (рисунок 4) строится на основе отопительно-бытового температурного графика (Приложение).

Сетевая вода перед поступлением в систему отопления проходит через подогреватель верхней ступени, где температура ее снижается от до . Расход воды на горячее водоснабжение изменяется регулятором температуры РТ. Обратная вода после системы отопления поступает в подогреватель нижней ступени, где остывает от до . В часы максимального водопотребления снижается температура воды, поступающей в систему отопления, что приводит к уменьшению отдачи тепла. Этот небаланс компенсируется в часы минимального водопотребления, когда в систему отопления поступает вода с температурой более высокой, чем требуется по отопительному графику.

Определяем балансовую нагрузку горячего водоснабжения, Q г б, МВт, по формуле.

При анализе сложных систем автоматического регулирования особое значение приобретают их структурные схемы, показывающие точки приложения воздействий и возможные пути распространения сигналов, осуществляющих взаимодействие между элементами системы.

Структурные схемы состоят из следующих структурных элементов:

динамических, осуществляющих некоторую функциональную или операторную связь между их входными и выходными сигналами;

преобразующих, служащих для преобразования характера или структуры сигналов;

сравнения, в которых происходит вычитание или сложение сигналов;

точек разветвления, в которых путь распространения сигнала разветвляется на несколько путей, ведущих к различным точкам системы;

связей или линий структурной схемы, указывающих направления распространения сигналов;

точек приложения воздействий;

логических, осуществляющих логические операции.

Выше нами указывалось, что всякая система автоматического регулирования согласно самому принципу ее действия всегда

имеет, по крайней мере, одну обратную связь, служащую для сравнения действительного и требуемого значения регулируемой величины. Такого рода обратную связь мы условились называть главной.

Нужно, однако, заметить, что современные системы автоматического регулирования, помимо главных обратных связей, число которых равно числу регулируемых величин, часто имеют еще несколько вспомогательных или местных обратных связей. Системы автоматического регулирования с одной регулируемой величиной, имеющие только одну главную обратную связь и не имеющие местных обратных связей, называют одноконтурными. В одноконтурных системах воздействие, приложенное к какой-либо точке, может обойти систему и вернуться в первоначальную точку, следуя только по одному пути обхода (см. рис. II.8). Системы автоматического регулирования, имеющие, помимо одной главной обратной связи, еще одну или несколько главных или местных обратных связей, называют многоконтурными. Многоконтурные системы характеризуются тем, что в них воздействие, приложенное к какой-либо точке, может обойти систему и вернуться в первоначальную точку, следуя по нескольким различным путям обхода.

В качестве примера многоконтурной (двухконтурной) системы автоматического регулирования с одной регулируемой величиной можно привести следящую систему, в которой, помимо главной обратной связи, служащей для образования сигнала ошибки и осуществляемой при помощи сельсина-датчика и сельсина-приемника, имеется еще местная обратная связь; последняя осуществляется при помощи тахогенератора и приключенного к ней RС-контура, напряжение с выхода которого вычитается из сигнала ошибки.

Примером многоконтурной системы автоматического регулирования с несколькими регулируемыми величинами является система регулирования авиационного двигателя, в которой регулируемыми величинами могут быть число оборотов двигателя, давление наддува, угол опережения зажигания, температура масла, температура охлаждающей жидкости и другие величины.

Причины введения местных обратных связей в систему автоматического регулирования бывают самые различные. Так, например, их применяют в корректирующих элементах для преобразования сигнала в соответствии с требуемым законом регулирования, в усилительных элементах - для линеаризации, понижения уровня шумов, понижения выходного сопротивления, в исполнительных элементах - для повышения мощности.

Обратные связи, охватывающие несколько последовательно соединенных элементов системы, могут вводиться для придания им требуемых динамических свойств.

Многомерные системы автоматического регулирования, т. е. системы с несколькими регулируемыми величинами, подразделяют

на системы несвязанного и связанного регулирования.

Системами несвязанного регулирования называют такие, в которых регуляторы, предназначенные для регулирования различных величин, не связаны друг с другом и могут взаимодействовать лишь через общий для них объект регулирования. Системы несвязанного регулирования, в свою очередь, можно подразделить на зависимые и независимые.

Зависимые системы несвязанного регулирования характеризуются тем, что в них изменение одной из регулируемых величин зависит от изменения остальных. Вследствие этого в таких системах процессы регулирования различных регулируемых величин нельзя рассматривать независимо, изолированно друг от друга.

Примером зависимой системы несвязанного регулирования может служить самолет с автопилотом, имеющий самостоятельные каналы управления рулями. Предположим, например, что самолет отклонился от заданного курса. Это вызовет благодаря наличию автопилота отклонение руля поворота. При возвращении к заданному курсу угловые скорости обеих несущих поверхностей самолета, а следовательно, и действующие на них подъемные силы сделаются неодинаковыми, что вызовет крен самолета. При этом автопилот отклонит элероны. В результате отклонений руля поворота и элеронов лобовое сопротивление самолета возрастет. Поэтому он начнет терять высоту, и его продольная ось отклонится от горизонтали. При этом автопилот отклонит руль высоты.

Таким образом, в рассмотренном примере процессы регулирования трех регулируемых величин - курса, поперечного крена и продольного крена, - строго говоря, нельзя считать независимыми друг от друга, несмотря на наличие самостоятельных каналов управления.

Независимая система несвязанного регулирования характеризуется тем, что в ней изменение каждой из регулируемых величин не зависит от изменения остальных, благодаря чему процессы регулирования различных величин можно рассматривать изолированно друг от друга. В качестве примера независимых систем несвязанного регулирования часто можно рассматривать систему регулирования числа оборотов гидротурбины и систему регулирования напряжения вращаемого ею синхронного генератора. Процессы регулирования в этих системах независимы, вследствие того, что процесс регулирования напряжения обычно протекает во много раз быстрее, чем процесс регулирования числа оборотов.

Системами связанного регулирования называют такие системы, в которых регуляторы различных регулируемых величин имеют друг с другом взаимные связи, осуществляющие взаимодействие между ними вне объекта регулирования.

Систему связанного регулирования называют автономной, если связи между входящими в ее состав регуляторами

таковы, что изменение одной из регулируемых величин в процессе регулирования не вызывает изменения остальных регулируемых величин.

Каскадное регулирование - это регулирование, в котором два или больше контуров регулирования соединены так, чтобы выход одного регулятора корректировал уставку другого регулятора.

На рисунке выше приведена блок-схема, которая иллюстрирует понятие каскадного регулирования. Блоки на диаграмме фактически представляют компоненты двух контуров регулирования: ведущий контур, который составлен из элементов системы регулирования A, E, F, и G и ведомый контур, который составлен из элементов системы регулирования A, B C, и D. Выход регулятора ведущего контура является заданием (уставкой) для регулятора ведомого контура регулирования. Регулятор ведомого контура вырабатывает управляющий сигнал для исполнительного механизма.

Для процессов, которые имеют значительные характеристики запаздывания (емкость или сопротивление, которые замедляют изменения переменной), ведомый контур регулирования каскадной системы может обнаружить рассогласование в процессе раньше и уменьшить тем самым время, требующееся для устранения рассогласования. Можно сказать, что ведомый контур регулирования «делит» запаздывание и уменьшает воздействие возмущения на процесс.

В системе каскадного регулирование используется больше, чем один первичный чувствительный элемент, и регулятор (в ведомом контуре регулирования) получает больше, чем один входной сигнал. Следовательно, система каскадного регулирования - это многоконтурная система регулирования.

Пример системы каскадного регулирования


В примере выше контур регулирования будет в итоге ведущим контуром при построении системы каскадного регулирования. Ведомый контур будет добавлен позже. Цель этого процесса состоит в том, чтобы нагреть воду, проходящую через внутреннее пространство теплообменника, обтекая трубы, по которым пропускается пар. Одна из особенностей процесса - то, что корпус теплообменника имеет большой объём и содержит много воды. Большое количество воды обладает ёмкостью, позволяющей сохранять большое количество теплоты. Это означает, что, если температура воды на входе в теплообменник изменится, эти изменения проявятся на выходе теплообменника с большим запаздыванием. Причиной запаздывания является большая ёмкость. Другой особенностью этого процесса является то, что паровые трубы оказывают сопротивление передаче теплоты от пара внутри труб к воде снаружи труб. Это означает, что будет иметься запаздывание между изменениями в паровом потоке и соответствующими изменениями температуры воды. Причиной этого запаздывания является сопротивление.

Первичный элемент в этом контуре регулирования контролирует температуру воды на выходе из теплообменника. Если температура воды на выходе изменилась, соответствующие физические изменения первичного элемента измеряются измерительным преобразователем, который преобразовывает значение температуры в сигнал, посылаемый регулятору. Регулятор измеряет сигнал, сравнивает его с уставкой, вычисляет разность и затем вырабатывает выходной сигнал, который управляет регулирующим клапаном на паровой линии, являющимся конечным элементом контура регулирования (регулирующим органом). Паровой регулирующий клапан или увеличивает, или уменьшает поток пара, обеспечивая возвращение температуры воды к уставке. Однако, из-за характеристик запаздывания процесса, изменение температуры воды будет медленным, и потребуется длительное время прежде, чем контур регулирования сможет считывать на сколько температура воды изменилась. К тому времени, могут произойти слишком большие изменения температуры воды. В результате, контур регулирования выработает избыточно сильное управляющее воздействие, что может привести к отклонению в противоположную сторону (перерегулированию), и снова будет "ждать" результат. В связи с медленной реакцией подобно этой, температура воды может циклически колебаться вверх и вниз в течение долгого времени прежде, чем придёт к устойчивому состоянию, возвратившись на значение уставки.


Переходной процесс системы регулирования улучшается, когда система дополняется вторым контуром каскадного регулирования, как показано на рисунке выше. Добавленный контур - это ведомый контур каскадного регулирования.

Теперь, когда изменяется расход пара, эти изменения будут считываться чувствительным элементом расхода (B) и измеряться измерительным преобразователем (C), который посылает сигнал ведомому регулятору (D). В то же самое время, температурный чувствительный элемент (E) в ведущем контуре регулирования воспринимает любое изменение температуры воды на выходе теплообменника. Изменения эти измеряются измерительным преобразователем (F), который посылает сигнал ведущему регулятору (G). Этот регулятор выполняет функции измерения, сравнения, вычисления и производит выходной сигнал, который посылается ведомому регулятору (D). Этот сигнал корректирует уставку ведомого регулятора. Затем ведомый регулятор сравнивает сигнал, который он получает от датчика расхода (C), с новой уставкой, вычисляет разность и вырабатывает корректирующий сигнал, который посылается на регулирующий клапан (A), чтобы корректировать расход пара.

В системе регулирования с добавлением к основному контуру ведомого контура регулирования любое изменение расхода пара немедленно считывается дополнительным контуром. Необходимая корректировка выполняется почти сразу, прежде, чем возмущение от парового потока воздействует на температуру воды. Если произошли изменения температуры воды на выходе из теплообменника, чувствительный элемент воспринимает эти изменения и ведущий контур регулирования корректирует уставку регулятора в ведомом контуре регулирования. Другими словами, он устанавливает контрольную точку или "смещает" регулятор в ведомом контуре регулирования так, так, чтобы скорректировать расход пара, с целью обеспечения заданной температуры воды. Однако, это реакция регулятора ведомого контура регулирования на изменения расхода пара уменьшает время, требуемое для компенсации влияния возмущения со стороны парового потока.

Связанные системы регулирования включают кроме основных регуляторов дополнительные динамические компенсаторы. Расчет и наладка таких систем гораздо сложнее, чем одноконтурных АСР, что препятствует их широкому применению в промышленных системах автоматизации.

Рассмотрим методы расчета многосвязных систем регулирования на примере объекта с двумя входами и двумя выходами.

3.1.1.Синтез несвязанного регулирования

Структурная схема системы представлена на рисунке 3.1 Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР дано на рисунке 3.2

Рисунок 3.1 - Структурная схема несвязного регулирования со взаимосвязанными координатами

Рисунок 3.2 - Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР

а - эквивалентный объект для первого регулятора; б - эквивалентный объект для второго регулятора.

Выведем передаточную функцию эквивалентного объекта в одноконтурной АСР с регулятором R1. Как видно, такой объект состоит из основного канала регулирования и связанной с ним параллельно сложной системы, включающей второй замкнутый контур регулирования и два перекрестных канала объекта. Передаточная функция эквивалентного, объекта имеет вид:

Второе слагаемое в правой части уравнения (7) отражает влияние второго контура регулирование на рассматриваемую и по существу является корректирующей поправкой к передаточной функции прямого канала.

Аналогично для второго эквивалентного объекта получим передаточную функцию в виде:

На основе формул можно предположить, что если на какой-то частоте модуль корректирующей поправки будет пренебрежимо мал по сравнению с амплитудно-частотной характеристикой прямого канала, поведение эквивалентного объекта на этой частоте будет определятся прямым каналом.

Наиболее важно значение поправки на рабочей частоте каждого контура. В частности, если рабочие частоты двух контуров регулирования co p i и оз р2 существенно различны, то можно ожидать, что взаимное влияние их будет незначительным при условии:

|W п2 (iω pl)| << |W 11 (iω pl)| ; (9)

Где |W п2 (iω pl)| =

Наибольшую опасность представляет случай, когда инерционность прямых и перекрестных каналов приблизительно одинакова. Пусть например, Wn(p)=W12(p)=W21(p)=W22(p)=W(p). Тогда для эквивалентных объектов при условии, что R1(p)=R2(p)=R(p), получим передаточные функции:

частотные характеристики

(11)

На границе устойчивости, согласно критерию Найквиста получим:

или ; (12)

Откуда =l или |R(iω)|=0.5/|W(iω)|

Так, настройка П - регулятора, при которой система находится на границе устойчивости, вдвое меньше, чем в одноконтурной АСР.

Для качественной оценки взаимного влияния контуров регулирования используют комплексный коэффициент связанности:

;(13)

который обычно вычисляют при нулевой частоте (т.е. в установившихся режимах) и на рабочих частотах регуляторов co p i и со Р 2. В частности, при ш=0 значение кс В определяется отношением коэффициентов усиления по перекрестным и основным каналам:

ксв (0)=Ri2 R21 /(R11 R22); (14) Если на этих частотах кс В =0, то объект можно рассматривать как односвязный, при кс В >1 целесообразно поменять местами прямые и перекрестные каналы; 0<кс В <1 расчет одноконтурных АСР необходимо вести по передаточным функциям эквивалентных объектов (7) и (8).

Рассчитаем кс В для нашего варианта:

kcв = (ki2*k2i)/(k11*k22)=(0.47*0.0085)/(0.015*3.25)~0.11


3.1.2 Системы связанного регулирования

На рисунке 8 представлены структурные схемы автономных АСР

Рисунок 3.3 – структурные схемы автономных АСР

а - компенсация воздействий от второго регулятора в первом контуре регулирования;

б - компенсация воздействий от первого регулятора во втором контуре регулирования;

в - автономная система регулирования двух координат. Рисунок Рисунок 8 - Структурные схемы автономных АСР