Как сделать индукционную печь своими руками. Индукционные печи: проверенные временем технологии для современной кухни Индуктивная плавка металла

Разработанные более века назад, индукционные печи прочно входят в наш быт. Это стало возможно благодаря развитию электроники. Взрывной рост мощности контроллеров, выполненных на основе кремниевых полупроводников и появление в широкой продаже транзисторов, способных обеспечивать большие мощности (в несколько киловатт) в последние годы приобрёл характер лавины. Всё это подарило человечеству невероятно большие перспективы в развитии миниатюрных установок, сопоставимых по мощности с промышленными устройствами ближайшего прошлого.

Использование и строение устройства

Применение индукционных печей в домашнем хозяйстве позволяет избежать появления в помещении очагов открытого пламени и является довольно эффективным способом плавления и контролированного нагрева металлов и сплавов. Это происходит благодаря тому, что металл нагревается, раскаляется и расплавляется не под воздействием высокотемпературных горелок, а с помощью пропускания через себя токов большой частоты, стимулирующих активное движение частиц в структуре материала.

Стало возможным появление в быту:

Кроме того, всё большее распространение получают электроиндукционные печки, которые работают не только с токопроводящим материалом. Их устройство немного отличается от обычных индукционных печей, так как в его основе лежит нагрев электрической индукцией материала, который не проводит ток (их ещё называют диэлектриками) между обкладками конденсатора , то есть, его выводами разной полярности. Достигаемые температуры при этом не очень большие (порядка 80−150 градусов Цельсия), поэтому такие установки применяются для плавления пластика или его термической обработки.

Особенности конструкции и принцип работы

Индукционная печь работает на основе образования в ней вихревых электрических токов. Для этого используют состоящую из витков толстого провода катушку индуктивности, к которой подводится источник переменного тока. Именно переменный ток образует постоянно меняющееся в зависимости от текущей частоты магнитное поле. Оно и провоцирует передачу этих токов помещаемому внутрь катушки веществу вместе с большим количеством тепла. Генератором при этом может выступать даже самый обычный сварочный инвертор.

Разделяют два вида индукционных печей:

  1. С магнитопроводом, особенностью которой является расположение индуктора внутри объёма металла, поддающегося плавке.
  2. Без магнитопровода - когда индуктор находится снаружи.

Конструкция с наличием магнитопровода используется, например, в канальных печах. В них используется неразомкнутый металлический (чаще всего - стальной) магнитопровод, внутри которого находятся тигель для плавки и индуктор, образовывающие первичную цепь обмотки. В качестве материала для тигля можно использовать графит, жаропрочную глину или любой другой непроводящий ток материал, обладающий подходящей термостойкостью. В нём размещают металл, который требуется расплавить. Это, как правило, всяческие сплавы цветных металлов, дюралюминий и чугун.

Генератор такой печи должен обеспечивать частоту переменного тока в пределах 400 герц. Возможны и варианты использования вместо генератора обычную электрическую сеть и питать печь с помощью тока с частотой в 50 герц, но в этом случае температура разогрева будет ниже и для более тугоплавких сплавов такая установка не подойдёт.

Тигельные же печи, не имеющие в своей конструкции магнитопровода, получили значительно большее распространение среди энтузиастов. Они используют токи значительно большей частоты для достижения большей плотности поля. Это связано как раз с отсутствием магнитопровода - слишком большой процент энергии поля рассеивается в пространстве. Для противодействия этому необходимо очень тонко настроить печь:

  • Обеспечить равную частоту контура индукционной установки и напряжения от генератора (при использовании инвертора это сделать легче всего).
  • Подобрать диаметр плавильного тигля таким образом, чтобы он был близок с длиной волны полученного излучения магнитного поля.

Таким образом можно минимизировать потери вплоть до 25% от всей мощности. Для достижения же наилучшего результата рекомендуется выставлять дважды, а то и трижды большую частоту источника переменного тока, чем резонансную. В этом случае диффузия металлов, входящих в состав сплава будет максимальной, а его качество - значительно лучше. Если повышать частоту и дальше, можно добиться эффекта выталкивания высокочастотного поля к поверхности изделия и так провести его закалку.

Вакуумные плавильные печи

Такой вид установок сложно назвать бытовыми, но рассмотреть их стоит из-за того, что вакуумная плавка имеет ряд технологических преимуществ по сравнению с другими видами. По своей конструкции она напоминает тигельную, с тем отличием, что сама печь находится в вакуумной камере. Это позволяет добиваться большей чистоты процесса расплавления металла, понизить его окисляемость в процессе обработки и ускорить процесс, добиваясь значительной экономии электроэнергии.

Кроме того, ограниченность и замкнутость пространства способствует избежать выделения в окружающее пространство вредных испарений плавящихся металлов и сохранять чистоту процесса их обработки. Возможность контролировать состав и процесс обработки также является одним из преимуществ печей этого вида.

Канальные индукционные установки

Ещё один вид промышленных печей, имеющих более широкое применение, чем другие. Их можно использовать не только в качестве плавилен, но и как раздатчики подготовленного материала и смесители нескольких видов сырья. Типовые конструкции таких устройств включают:

Малейшее размыкание контура, который образуется жидким металлом, магнитопроводом и катушкой приводит к повышению его собственного сопротивления и мгновенному выбросу всей массы сырья из канала. Для противодействия такому явлению внутри канала оставляют «болото» - небольшую массу металла, которая поддерживается в жидком виде.

Преимущества индуктивных печей канального типа:

  • Невысокая цена установок.
  • Экономичность - для поддержания температуры внутри ванны, которая плохо рассеивает тепло, нужно малое количество электроэнергии.
  • Коэффициент полезного действия индуктора при работе очень высок.

Недостатки:

Основные элементы схемы печи

Для того чтобы собрать установку и выполнять работы на ней, необходимо найти подходящую схему индукционной печи и детали для неё. Для поиска последних очень пригодится наличие одного или нескольких ненужных блоков питания от компьютера, так как большинство деталей можно найти в них. Типовая схема простейшей печи с самодельным инвертором будет включать такие элементы, как:

Инвертор для установки собирается по схеме, предложенной С. В. Кухтецким для лабораторных испытаний. Её легко можно найти в интернете. Мощность инвертора, который питается от напряжения в диапазоне 12−35 вольт будет составлять 6 киловатт, а его рабочая частота - 40−80 килогерц, этого будет более чем достаточно для домашних проектов.

Техника безопасности при работе

Так как работа с индукционной печью подразумевает тесный контакт с расплавленным металлом и токами высокой частоты и силы, стоит озаботиться о качественном заземлении установки и надёжных средствах защиты. При этом одежда должна строго соответствовать всем требованиям:

Не стоит забывать и о хорошей вентилируемости помещения, в котором будут работать. Расплавленный металл выбрасывает в воздух химические соединения, которые совсем неполезны для ваших лёгких.

Для плавки металла в малых масштабах бывает необходимо какое то приспособление. Особенно это остро ощущается в мастерской или при малом производстве. Максимально эффективным на сегодняшний момент является печь для плавки металла с электрическим нагревателем, а именно индукционная. Ввиду особенности ее строения, она может эффективно использоваться в кузнечном деле и стать не заменимым инструментом в кузнице.

Устройство индукционной печи

Печь состоит из 3 элементов:

  1. 1. Электронно-электрическая часть.
  2. 2. Индуктор и тигель.
  3. 3. система охаждения индуктора.

Для того чтобы собрать действующую печь для плавки металла достаточно собрать рабочую электрическую схему и систему охлаждения индуктора. Самый простой вариант плавки металла приведен в видео ниже. Плавка производится во встречном электромагнитном поле индуктора, которое взаимодействует с наводимыми электро-вихревыми токами в металле, что удерживает кусочек алюминия в пространстве индуктора.

Для того чтобы эффективно плавить металл, необходимы токи большой величины и высокой частоты порядка 400-600 Гц. Напряжение из обычной домашней розетки 220В обладает достаточными данными для плавления металлов. Необходимо только 50 Гц превратить в 400-600 Гц.
Для этого подойдет любая схема для создания катушки Тесла. Мне наиболее приглянулись 2 следующих схем на лампе ГУ 80, ГУ 81(М). И запитывание лампы трансформатором МОТ от микроволновки.


Данные схемы предназначены для катушки тесла, но индукционная печь из них получается отменная, достаточно заместо вторичной катушки L2 поместить во внутреннее пространство первичной обмотки L1 кусочек железа.

Первичная катушка L1 или индуктор состоит из свернутой в 5-6 витков медной трубки, на торцах которой нарезается резьба, для подсоединения системы охлаждения. Для левитационной плавки последний виток следует сделать в обратном направлении.
Конденсатор С2 на первой схеме и идентичный ему на второй задаёт частоту генератора. При значении в 1000 пикоФарад частота составляет около 400 кГц. Этот конденсатор обязательно должен быть высокочастотным керамическим и расчитанным под высокое напряжение порядка 10 кВ (КВИ-2, КВИ-3, К15У-1), другие типы не подходят! Лучше ставить К15У. Можно подсоединять конденсаторы параллельно. Также стоит учитывать мощность на которую расчитаны конденсаторы (это у них на писано на корпусе), берите с запасом. другие два конденсатора КВИ-3 и КВИ-2 греются при длительной работе. Все остальные конденсаторы берутся тоже из серии КВИ-2, КВИ-3, К15У-1, изменяются в характеристиках конденсаторов только емкость.
Вот в итоге схематично, что должно получиться. В рамки обвел 3 блока.

Система охлаждения выполнена из насоса с подачей 60л/мин, радиатор от любой вазовской машины, и вентилятор охлождения я поставил напротив радиатора обычный домашний.

В последнее время за рубежом вновь возрос интерес к индукционным печам как к возможным агрегатам получения слитков, особенно с использованием в качестве шихты металлизованных окатышей.
Применение печей этого типа в сталеплавильных цехах ограничивается во всем мире целями получения сплавов или лигатур, в связи с чем емкость их, как правило, не превышает 5 т.
В литейных цехах, напротив, работают крупные печи. Самая крупная установка в мире включает в себя 4 печи емкостью по 60 т и мощностью по 20 кВт с общей производительностью 160 т/ч. Используемый лом подогревается до 600 °C.
По целому ряду важнейших параметров печи этого типа предпочтительнее дуговых электропечей. В связи с этим возникают вопросы относительно возможных граничных условий применения их в сталеплавильном производстве. Имеющаяся практика свидетельствует о том, что допустимое напряжение может составлять 3000 В и сила тока 70 000 А. Таким образом, кажущаяся мощность может быть в перспективе повышена до 210 MB*А. Индуцированная действительная мощность, зависящая от толщины стен тигля, относится к кажущейся мощности как 1:5-1:7.
Движение металла в индукционной печи, являющееся в целом весьма положительным с металлургических позиций фактором, при чрезмерной удельной мощности может быть, однако, сопряжено с выбросами металла. По этому показателю удельная мощность крупных печей ограничивается пока что величиной 330 кВт/т металла.
На мощность индукционных печей может существенно повлиять толщина футеровки тигля. Футеровка должна быть достаточно надежной и долговечной. Однако по мере увеличения ее толщины снижается полезная мощность печи, к примеру, для печи емкостью 100 т при кажущейся мощности 210 MB*A она снижается до 38 МВт при толщине стен 15 см и до 28 МВт при толщине стен 40 см. Выбор материала стен также на сегодня является большой проблемой. Кислая футеровка выдерживает большое число плавок, что позволяет иметь расход огнеупоров 0,7 кг/т стали при температуре выпуска стали 1550 °C. Однако такая футеровка годится далеко не для всех случаев и, как правило, не приемлема для выплавки стали из обычного лома из-за невозможности удалить из металла серу и фосфор в этом случае. К тому же углерод и марганец металла будут вступать во взаимодействие с кремнеземом футеровки, что может привести к последствиям, влияние которых необходимо ограничивать.
Удаление таких примесей, как кремний, сера, марганец, из металла можно в известной мере обеспечить вдуванием соответствующих порошкообразных материалов без чрезмерного износа футеровки. Можно также обеспечить и кипение металла с известным понижением мощности в этот период во избежание выбросов.
С позиций усвоения легирующих, расплавления легковесной шихты, удаления газов из металла и снижения его газонасыщенности индукционные печи обладают несомненными преимуществами перед дуговыми. Наряду с этим индукционные печи по принципу работы являются по существу агрегатами непрерывного действия и поэтому могут быть более пригодными для передела металлизованной шихты. Важно и то, что работа индукционных печей не сопровождается такими значительными колебаниями электрических параметров, как работа дуговых печей.
Капитальные и эксплуатационные затраты на производство стали в индукционных и дуговых печах близки между собой. Ho при организации непрерывного процесса плавки можно ожидать снижения затрат в случае использования индукционных печей вследствие упрощения конструкции зданий и газоочистки, устранения затрат на борьбу с шумом, меньших затрат на обслуживающий персонал и огнеупоры, более гибкого регулирования температуры и химического состава стали.
Использование индукционных печей для переплава металлизованных окатышей имеет ряд дополнительных преимуществ.
Вследствие интенсивного движения металла в индукционной печи металлизованные окатыши могут быстро увлекаться в глубь ванны, что предохранит их от окисления в процессе плавления. К тому же само плавление происходит без перегрева окатышей, что обеспечивает минимальный угар железа и выделение пыли из печи.
При заданной подводимой мощности к печи температура металла легко регулируется скоростью подачи окатышей.
Могут быть сокращены капитальные затраты, поскольку установка может иметь два тигля, один из которых находится в ремонте, другой в работе. В этом случае достигается высокая степень использования установленной мощности.
Малое время- соприкосновения окатышей с атмосферой, а также отсутствие зон высоких температур, как это имеет место под электрическими дугами в дуговой печи, позволят получать очень низкие содержания азота в металле - на уровне их содержаний в металле, выплавленном в кислородных конверторах.
Что касается металлургических процессов в индукционной печи при переплаве металлизованных окатышей, то они по существу сводятся к двум процессам: удалению фосфора и удалению углерода с одновременным довосстановлением содержащихся в окатышах окислов железа. Содержание серы в окатышах при газовом восстановлении может быть получено на низком уровне.
На ряде индукционных установок в ФРГ емкостью от нескольких десятков килограммов до двух тонн были проведены достаточно разносторонние эксперименты по переплаву металлизованных окатышей, которые позволили выявить многие особенности этого процесса, его преимущества и недостатки, а также в известной мере определить перспективы на будущее.
Скорость нагрева губчатого железа в индукционной тигельной печи джоулевым теплом зависит как от параметров самого губчатого железа, так и печи. При проведении сравнительных экспериментов в двух печах мощностью 54 и 30 кВт с частотой тока соответственно 250 и 2000 Гц при массе плавки от 4 до 22 кг, с использованием губчатого железа пяти сортов с колебаниями размеров кусков от 2-16 до 6-40 мм, насыпной плотности от 1,01 до 2,52 г/см3 и степени металлизации от 83,9 до 99,2 были установлены следующие основные закономерности. Величина индуктируемой в садке мощности и скорость нагрева губчатого железа возрастали с увеличением частоты тока и мощности печи, а также величины кусков губчатого железа, степени его металлизации и насыпной плотности. Однако при наличии выявленной технической возможности расплавления губчатого железа в индукционной печи в отсутствие какого-то количества предварительно расплавленного металла, так называемого "болота", была установлена нецелесообразность такого процесса. Губчатое железо начинало плавиться на дне тигля, а находившийся выше слой губчатого железа вниз не сходил и спекался настолько прочно, что дальнейшая загрузка губчатого железа оказывалась невозможной. Попытки расплавить этот слой могут привести к перегреву уже расплавленного металла и прогару тигля. Чтобы получить необходимую для плавления высокую индуктируемую мощность, необходимы высокочастотные установки, которые значительно более дороги и к тому же металл в них очень слабо перемешивается. Наконец, необходимый нагрев губчатого железа достигался при очень высоком расходе электроэнергии, т.е. при значительно более низком к.п.д. печи, чем при плавлении скрапа.
Дальнейшие опыты с высокочастотной печью (2000 Гц) емкостью 120 кг подтвердили неперспективность использования печей такого типа для плавления губчатого железа. Даже при загрузке губчатого железа на чистую поверхность предварительно расплавленного металла окатыши быстро расплавлялись только в начальный период их загрузки, не увлекаясь при этом в глубь ванны. В дальнейшем начинал образовываться шлак, поверхность которого вследствие излучения и охлаждающего эффекта губчатого железа покрывалась коркой, что препятствовало поступлению свежих порций губчатого железа в металлическую ванну.
Гораздо более обнадеживающими были эксперименты, проведенные в низкочастотной печи (150 Гц) емкостью 1,5 т, в ходе которых переплавлялось губчатое железо со степенью металлизации от 87,6 до 97,0 с крупностью кусков 6-40 мм. Каждую плавку начинали при наличии в печи около 1 т расплавленного металла и дополнительно загружали около 300 кг губчатого железа, после расплавления выпускали около 250 кг металла и скачивали шлак. При этом расход электроэнергии в случае выплавки стали с 0,5 % С составил в среднем 2617 МДж/т и в случае выплавки стали с 1,8 % 2318 МДж/т. На каждый 1 % снижения степени металлизации расход электроэнергии увеличивался на 36 МДж на 1 т выплавленного металла. Длительность плавления каждой порции губчатого железа составляла 16 мин, при этом температура ванны вследствие недостаточности подводимой мощности снижалась на 90 °C. Таким образом, производительность плавления определялась не скоростью плавления, а подводимой мощностью. Поскольку пустая порода губчатого железа имела кислый характер (2,5 % SiO2; 0,1 % CaO и 0,2 % Al2O3), то износ основной футеровки тигля был довольно значительным, увеличивался сверху вниз и достигал 15 % от начальной толщины, составляющей 13 см. Доля восстановленных окислов железа за время плавки составляла около 65 %. В тех случаях, когда шлак не раскислялся кремнием и марганцем, он был пористым и быстро охлаждался с поверхности, что вынуждало прекращать загрузку губчатого железа для скачивания шпака, если степень металлизации губчатого железа не превышала 90 %.
На специально построенной на заводе в Оберхаузене индукционной печи промышленной частоты емкостью 2 т и установленной мощностью 750 кВт было проведено изучение взаимодействия шлака и огнеупорной футеровки тигля, а также реакций на границах раздела фаз губчатое железо - расплав и расплав - шлак. Толщина кладки стен составляла в начале кампании 100 мм и допускалось ее снижение до 40 мм. Использовалось губчатое железо, полученное на установке Пурофер с различным содержанием углерода и пустой породы, а также степени восстановления (табл. 27).

При переплаве железа марки А с низким содержанием фосфора и кислой пустой породой можно было работать на кислых шлаках и кварцевой футеровке тигля. При этом насыщенный шлак содержал около 82 % SiO2; 10 % FeO и 8 % Al2O3. Износа нижней части тигля не наблюдали, но верхняя его часть изнашивалась довольно быстро, ко не за счет химического взаимодействия со шлаком, а в результате попадания на стенки окисленных капель металла и образования при этом легкоплавких силикатов. Устранено это явление может быть путем изготовления этой части тигля из глинозема.
При переплаве губчатого железа марки В основность шлака составляла около 1,5 и количество его не превышало 110 кг/т. Такой шлак разъедал футеровку из плавленого или обожженного магнезита, тигель из материала, содержащего 80 % MgO и 20 % Cr2O3, стоял в течение трех недель при трехсменной работе.
При изучении металлургических процессов при переплаве губчатого железа было отмечено два важных обстоятельства.
1. При выбранных электрических параметрах печи металл в ней интенсивно перемешивался и губчатое железо быстро увлекалось в глубь ванны. Благодаря этому, а также наличию кислорода и углерода в самом губчатом железе реакция обезуглероживания получала большое развитие и протекала с высокими скоростями, несмотря на неблагоприятное соотношение поверхности ванны к ее объему в индукционной печи по сравнению с дуговой печью. В экспериментах скорость обезуглероживания достигала 1 кг/ (м2*мин) и предположительно может быть повышена. Благодаря этому скорость расплавления губчатого железа в индукционной печи емкостью 100 т может достигать 50 т/ч.
2. Температура шлака в индукционной печи не может превышать температуру металла и поскольку к тому же фосфор в губчатом железе находится в пустой породе, то существенно облегчаются возможности получения низкого содержания фосфора в металле. Для стали, выплавленной из губчатого железа марки В, типичным был следующий химический состав, %: С 0,1; Mn 0,04; P 0,011; S 0,005 и N2 0,0015. Эти эксперименты показали, что в случае периодической загрузки губчатого железа при правильном Выборе геометрических и электрических параметров печи особых технических трудностей в процессе его переплава не возникает, однако стоимость плавления, отнесенная к выходу годного металла, выше, чем при плавлении скрапа, увеличивается расход электроэнергии и раскислителей, выше износ футеровки, большие потери времени на скачивание шлака. Поэтому переплав губчатого железа в индукционной Печи может быть экономически целесообразен, если стоимость его будет меньше стоимости скрапа или возможно будет найти источники компенсации этих потерь (большая однородность и чистота губчатого железа, удобство его загрузки и транспортировки и т.д.).
Особенно большие преимущества могут быть получены при обеспечении непрерывной загрузки и выпуска металла. В этом случае в принципе возможны резкое сокращение ручных операций, достижение высокой степени автоматизации процесса, работа при полном тигле на максимальной мощности при соответствии подводимой и потребляемой электрической мощности и обеспечении стационарного процесса плавления, температуры и химического состава металла.
По данным, при периодическом процессе, но с оставлением в тигле 30-60 % металла потребляемая электрическая мощность составляет 75-100 % от номинальной (рис. 101).
Проведенная на серии экспериментов в печи емкостью 130 кг проверка этих предположений в значительной степени их подтвердила, но выявила и ряд новых особенностей процесса, сопряженных с затруднениями.
В течение 970 мин было проплавлено 116 кг губчатого железа со степенью металлизации 96,9 % в кислом тигле с нагревом металла до температуры максимально 1600 °C при содержании в нем углерода от 1,2 до 3,5 %. Загрузка губчатого железа производилась непрерывно через трубу с внутренним диаметром в нижней части 80 мм, непрерывный выпуск металла обеспечивался наклонным положением тигля в ходе экспериментов. Износ тигля при температуре ванны ниже 1500 °C был незначительным, но при температуре выше 1560 °C уже через час наблюдался сильный износ, особенно в верхней части. Расход электроэнергии на 1 т губчатого железа сильно зависел от подводимой мощности и снижался вдвое при увеличении ее с 42 до 78 кВт (рис. 102). При этом производительность плавления повышалась с 10 до 28 т/м2, однако температура металла и содержание в нем углерода возрастали. Таким образом, работа с полным тиглем и максимальной подводимой мощностью может существенно повысить экономичность процесса. Окончательно не подтвердилось предположение о том, что губчатое железо из-за малой его теплопроводности будет расплавляться медленнее, чем скрап. Скорость плавления при стационарном состоянии процесса определялась только количеством подводимого тепла. Поддержание требуемого содержания углерода при достижении стационарности процесса не вызывает затруднений, несмотря на протекание реакций обезуглероживания, и непрерывном растворении в ванне губчатого железа с содержанием углерода, отличным от содержания его в ванне.

Проведенные эксперименты, хотя и не дали окончательного ответа относительно возможной экономической эффективности процесса переплава губчатого железа в промышленных условиях, но прояснили очень многие технологические и экономические аспекты проблемы. Достаточно отчетливо установлено, что количество шлака должно быть минимальным, а степень металлизации максимальной. В этом случае протекание процесса существенно облегчается, но следует отметить, что одновременно возрастает и стоимость губчатого железа. Работа на кислых шлаках, возможна при использовании только кислой футеровки и при содержании фосфора в губчатом железе не выше допустимого в стали. Ho температура нагрева металла в этом случае не должна превышать 1500 °C. Использование магнезитохромитовых тиглей позволяет нагревать металл до более высоких температур, но необходимость нейтрализации кремнезема шлака влечет за собой увеличение расхода раскислителей, электроэнергии, шлакообразующих и снижение выхода годного. Во всех случаях необходима принимать меры против подстуживания шлака, а возможно необходимо будет разрабатывать и способы его подогрева.
Весьма важным обстоятельством является обеспечение таких геометрических размеров тигля и электрических параметров установки, при которых средняя часть поверхности металла в тигле будет свободна от шлака, благодаря чему губчатое железо будет попадать непосредственно на металл и увлекаться в его толщу. В противном случае необходимо будет принятие специальных мер для прохождения губчатого железа через толщу шлака. Согласно предложению фирмы "Тиссен" это может быть обеспечено при отношении удельной мощности печи к корню квадратному из частоты, равному 49,5.
He исключено, что учет всех этих ограничений приведет к созданию какого-то процесса, в котором индукционная печь будет выступать только в качестве агрегата для непрерывного плавления металлизованной шихты, а остальные операции (подогрев, раскисление, легирование, доводка по химическому составу и т.д.) будут осуществляться в агрегатах внепечной металлургии. В качестве такого агрегата в первую очередь может представлять интерес агрегат типа печь - ковш, разработанный фирмами ASEA и SKF, в котором может быть осуществлен весь комплекс отмеченных выше операций.
Тем не менее губчатое железо, получаемое процессом Хоганес, уже в течение длительного времени используется в качестве шихты в количестве от 10 до 60 % при выплавке в кислых индукционных печах емкостью до 12 т инструментальных и конструкционных сталей, сталей тяжелых поковок и в некоторой степени нержавеющих сталей, а также в основных печах, главным образом при выплавке последних. При этом обрабатываемость, чистота и однородность стали существенно повышаются.
Губчатое железо используется в виде брикетов длиной 75 мм и диаметром около 88 мм с содержанием 0,17% С и около 1 % O2. Такое соотношение между кислородом и углеродом позволяет поддерживать ванну в состоянии умеренного кипения и обеспечивает получение, если необходимо, даже и очень низких содержаний углерода. Реакция между этими элементами начинается уже при 700 °C, однако взаимодействие их с хромом и другими, имеющими к ним сродство элементами большого развития не получает. Это открывает возможность сочетать использование губчатого железа с более углеродистым феррохромом, чем обычно применяемый при выплавке низкоуглеродистых сталей.
Во избежание излишних потерь хрома и повышения содержания углерода в расплаве рекомендуется следующий порядок загрузки индукционной печи.
Никель и молибден загружаются на дно печи, затем подаются брикеты губчатого железа, после расплавления этой части шихты производится скачивание шлака и только затем присадка скрапа и оставшихся легирующих добавок.
Извлечение хрома, расход электроэнергии и производительность печей находятся на том же уровне, что и при использовании обычной шихты.
В табл. 28 приведены результаты по извлечению легирующих элементов при выплавке в 12-т индукционной печи аустенитной нержавеющей стали с загрузкой 12,3 % губчатого железа, 24,0 % оборотного скрапа, 9,25 % никеля, 18,5 % феррохрома, 2,85 % ферромолибдена, 31,0 % стального скрапа (0,05 % С) и 2,1 % ферромарганца.
Фирмы "Тиссен" и "Броун Бовери" заключили соглашение о реализации совместного изобретения, касающегося конструкции мощных индукционных печей и процесса передела в них металлизованного сырья, получаемого по способу Пурофер. Изобретение предусматривает создание печей промышленной частоты емкостью свыше 100 т с удельной мощностью 350 кВт/т при частоте тока 50 Гц или 385 кВт/т при частоте тока 60 Гц. Металлическая шихта будет непрерывно подаваться на оголенную от шлака вспученную под влиянием электромагнитного движения центральную часть поверхности металла в тигле. При этом предполагается использовать опыт работы существующей печи емкостью 60 т, мощностью 21 МВт, используемой для плавки чугуна, и реализовать процесс на печи емкостью свыше 100 т и мощностью 45 МВт.

Древние гончары, обжигавшие керамические изделия в горнах, иногда находили на их дне блестящие твердые кусочки с необычными свойствами. С того самого момента, когда они стали задумываться, что это за чудные вещества, как они там появились, а также куда их можно применить с пользой, и родилась металлургия - ремесло и искусство обработки металлов.

А основным инструментом для извлечения из руды новых чрезвычайно полезных материалов стали термоплавильные горны. Конструкции их прошли долгий путь развития: от примитивных одноразовых куполов из глины, разогреваемых дровами до современных электропечей с автоматическим управлением процессом плавления.

В металлоплавильных агрегатах нуждаются не только гиганты черной металлургии, использующие вагранки, домны, мартены и регенераторные конвертеры с выработкой за один цикл в несколько сотен тонн.
Такие величины характерны для выплавки чугуна и стали, на долю которых приходится до 90% промышленного производства всех металлов.
В цветной же металлургии и во вторичной переработке - объемы значительно меньшие. А мировые обороты производства редкоземельных металлов и вообще исчисляются несколькими килограммами в год.

Но потребность в плавке металлопродукции возникает не только при ее массовом производстве. Значительный сектор рынка металлообработки занимает литейное производство, где требуются металлоплавильные агрегаты сравнительно небольшой выработки - от нескольких тонн до десятков килограммов. А для штучного ремесленного и декоративно‑прикладного производства и ювелирного дела находят применение плавильные аппараты с выработкой в несколько килограммов.

Все виды металлоплавильных устройств можно поделить по типу источника энергии для них:

  1. Термические. Теплоноситель - топочный газ либо сильно разогретый воздух.
  2. Электрические. Используют различные тепловые действия электрического тока:
    • Муфельные. Разогрев помещенных в теплоизолированный корпус материалов спиральным ТЭНом.
    • Сопротивления. Нагрев образца прохождением через него тока большой величины.
    • Дуговые. Используют высокую температуру электрической дуги.
    • Индукционные. Плавление металлического сырья внутренним теплом от действия вихревых токов.
  3. Потоковые. Экзотические плазменные и электронно‑лучевые аппараты.

Поточная электронно‑лучевая плавильная печь Термическая мартеновская печь Электро-дуговая печь

При небольших объемах выработки наиболее целесообразным и экономичным оказывается использование электрических, в особенности, индукционных плавильных печей (ИПП).

Устройство индукционных электропечей

Если говорить кратко, то действие их основана на явлении токов Фуко - вихревых индукционных токов в проводнике. В большинстве случаев инженеры‑электротехники борются с ними, как с вредным явлением.
Например, именно из‑за них сердечники трансформаторов выполняются из стальных пластин или ленты: в сплошном куске металла эти токи могут достигать значительных величин, приводящим к бесполезным потерям энергии на его нагревание.

В индукционно‑плавильной электропечи это явление применяется с пользой. По сути она и представляет собой своеобразный трансформатор, в котором роль короткозамкнутой вторичной обмотки, а в некоторых случаях и сердечника выполняет расплавляемый металлический образец. Именно металлический - нагревать в ней можно только проводящие электричество материалы, диэлектрики же будут оставаться холодными. Роль индуктора - первичной обмотки трансформатора выполняют несколько витков толстой свернутой в катушку медной трубки, по которой циркулирует охлаждающая жидкость.

Кстати, на том же принципе действуют ставшие чрезвычайно популярными кухонные варочные поверхности с индукционным высокочастотным нагревом. Положенный на них кусок льда даже не растает, а поставленная металлическая посуда нагреется почти мгновенно.

Особенности конструкции индукционных термопечей

Существует два основных типа ИПП:

Для обоих видов металлоплавильных агрегатов нет принципиальных различий в типе рабочего сырья: они с успехом плавят и черные и цветные металлы. Необходимо только выбрать соответствующий рабочий режим и тип тигля.

Параметры выбора

Таким образом, основными критериями выбора того или иного вида термопечи являются объемы и непрерывность производства. Для небольшой литейной мастерской, например, в большинстве случаев подойдет тигельная электропечь, а предприятию по переработке вторсырья - канальная.

Кроме того, в числе основных параметром тигельной термопечи - объем одной плавки, исходя из которого и следует выбирать конкретную модель. Немаловажными характеристиками являются также максимальная рабочая мощность и тип тока: однофазный или трехфазный.

Выбор места для монтажа

Размещение индукционной печи в цехе или мастерской должно обеспечивать свободный подход к ней для безопасного выполнения всех технологический операций в процессе плавки:

  • загрузки сырья;
  • манипуляций во время рабочего цикла;
  • выгрузки готового расплава.

Место установки должно быть обеспечено необходимыми электрическими сетями с требуемым рабочим напряжением и количеством фаз, защитным заземлением с возможностью быстрого аварийного отключения агрегата. Также установку нужно обеспечить подводом воды для охлаждения.

Настольные конструкции небольших габаритов должны тем не менее устанавливаться на прочные и надежные индивидуальные основания, не предназначенные для других операций. Напольным аппаратам также необходимо обеспечить прочный укрепленный фундамент.

В районе выгрузки расплава запрещено располагать пожаро‑ и взрывоопасные материалы. Рядом с местом размещения печи необходимо повесить пожарный щит со средствами тушения.

Инструкция по монтажу

Промышленные термоплавильные агрегаты - устройства с большим энергопотреблением. Их установка и электромонтаж должны проводиться квалифицированными специалистами. Подключение небольших агрегатов с загрузкой до 150 кг может быть выполнено квалифицированным электриком с соблюдением обычных правил монтажа электроустановок.

Например, печь ИПП‑35, мощностью 35 кВт с объемом выработки черных металлов 12 кг, а цветных - до 40 имеет массу 140 кг. Соответственно, установка ее будет заключаться в следующих шагах:

  1. Выбор подходящего места размещения с прочным основанием для термоплавильного узла и высоковольтного индукционного блока с водяным охлаждением и конденсаторной батареей. Расположение агрегата должно соответствовать всем эксплуатационным требованиям и правилам электро‑ и пожарной безопасности.
  2. Обеспечение установки линией водоохлаждения. Описываемая электроплавильная печь в комплекте поставки не имеет средств охлаждения, которые нужно приобрести дополнительно. Лучшим решением для нее будет двухконтурная градирня с замкнутым циклом.
  3. Подключение защитного заземления.

    Функционирование любых электроплавильных печей без заземления категорически запрещена.

  4. Подведению отдельной электрической линии с кабелем, сечение которого обеспечивает соответствующую нагрузку. Силовой щит также должен обеспечивать требуемую нагрузку с запасом по мощности

Для маленьких мастерских и домашнего применения выпускаются мини‑печи, например, УПИ‑60‑2, мощностью 2 кВт с объемом тигля 60 см³ для плавления цветных металлов: меди, латуни, бронзы ~ 0,6 кг, серебра ~ 0,9 кг, золота ~ 1,2 кг. Вес самой установки - 11 кг, габариты - 40х25х25 см. Ее монтаж заключается в размещении на металлическом верстаке, подведении проточного водяного охлаждения и включении в розетку.

Технология использования

Перед началом работы с тигельной электропечью следует обязательно проверить состояние тиглей и футеровки - внутренней защитной теплоизоляции. Если она рассчитана на применение двух видов тиглей: керамических и графитовых, необходимо выбрать по инструкции соответствующий загружаемому материалу.

Обычно керамические тигли используются для черных металлов, графитовые - для цветных.

Порядок работы:

  • Тигель вставить внутрь индуктора и, загрузив рабочим материалом, накрыть теплоизоляционной крышкой.
  • Включить водяное охлаждение. Многие модели электроплавильных агрегатов не запустятся, если нет необходимого давления воды.
  • Процесс плавки в тигельной ИПП начинается с ее включения и выхода на рабочий режим. Если есть регулятор мощности, перед включением установить его в минимальное положение.
  • Плавно поднять мощность до рабочей, соответствующей загруженному материалу.
  • После расплавления металла мощность снизить до четверти от рабочей для поддержания материала в расплавленном состоянии.
  • Перед разливом убрать регулятор до минимума.
  • По окончании плавки - обесточить установку. Водяное охлаждение отключить после ее остывания.

Все время плавки агрегат должен находиться под наблюдением. Любые манипуляции с тиглями нужно производить с помощью щипцов и в защитных рукавицах. В случае возгорания установку следует немедленно обесточить и сбить пламя брезентом либо затушить любым огнетушителем, кроме кислотного. Заливать же водой категорически запрещено.

Преимущества индукционных печей

  • Высокая чистота получаемого расплава. В других типах металлоплавильных термопечей обычно имеется прямой контакт теплоносителя с материалом, и, как следствие, - загрязнение последнего. В ИПП нагрев производится поглощением внутренней структурой проводящих материалов электромагнитного поля индуктора. Поэтому такие печи идеальны для ювелирных производств.

    Для термических печей главной проблемой является уменьшение содержания в расплавах черных металлов фосфора и серы, ухудшающих их качество.

  • Высокий кпд индукционно‑плавильных устройств, доходящий до 98%.
  • Большая скорость плавки благодаря нагреву образца изнутри и, как следствие высокая производительность ИПП, особенно для маленьких рабочих объемов до 200 кг.

    Разогревание муфельной электропечи с загрузкой 5 кг происходит в течение нескольких часов, ИПП - не более часа.

  • Аппараты с загрузкой до 200 кг просты в размещении, монтаже и эксплуатации.

Главный недостаток электроплавильных устройств, и индукционные не являются исключением, - относительная дороговизна электроэнергии как теплоносителя. Но несмотря на это высокий кпд и хорошая производительность ИПП, в значительной мере окупают их в процессе эксплуатации.

В видео представлена индукционная печь во время работы.

Индукционные печи применяются для выплавки металлов и отличаются тем, что нагрев в них происходит посредством электрического тока. Возбуждение тока происходит в индукторе, а точнее в непеременном поле.

В подобных конструкциях энергия превращается несколько раз (в данной последовательнос ти):

  • в электромагнитную;
  • электрическую;
  • тепловую.

Подобные печи позволяют использовать тепло с максимальной эффективностью, что неудивительно, ведь они – наиболее совершенные из всех существующих моделей, работающих на электроэнергии.

Обратите внимание! Индукционные конструкции бывают двух типов – с сердечником или без него. В первом случае металл помещается в трубчатый желоб, который располагается вокруг индуктора. Сердечник размещен в самом индукторе. Второй вариант называют тигельным, т. к. в нем металл с тиглем находятся уже внутри индикатора. Разумеется, ни о каком сердечнике в данном случае речи быть не может.

В сегодняшней статье речь пойдет о том, как изготавливается индукционная печь своими руками .

Среди многочисленных преимуществ стоит выделить следующие:

  • экологическую чистоту и безопасность;
  • повышенную однородность расплава благодаря активному перемещению металла;
  • быстродействие – печь можно использовать практически сразу после включения;
  • зонную и фокусированную направленность энергии;
  • высокую скорость плавления;
  • отсутствие угара от легирующих веществ;
  • возможность регулировки температуры;
  • многочисленные технические возможности.

Но есть и свои минусы.

  1. Шлак нагревается от металла, вследствие чего обладает низкой температурой.
  2. Если шлак холодный, то из металла очень сложно удалить фосфор и серу.
  3. Между катушкой и плавящимся металлом магнитное поле рассеивается, поэтому потребуется уменьшение толщины футировки. Это в скором времени приведет к тому, что сама футировка выйдет из строя.

Видео – Печь индукционная

Промышленное применение

Оба варианта конструкции используются при выплавке чугуна, алюминия, стали, магния, меди и драгоценных металлов. Полезный объем подобных конструкций может составлять как несколько килограмм, так и несколько сотен тонн.

Печи промышленного назначения делятся на несколько типов.

  1. Конструкции средней частоты обычно используются в машиностроении и металлургии. С их помощью плавится сталь, а при использовании графитовых тиглей и цветные металлы.
  2. Конструкции промышленной частоты применяются при выплавке чугуна.
  3. Конструкции сопротивления предназначаются для плавки алюминия, алюминиевых сплавов, цинка.

Обратите внимание! Именно технология индукции легла в основу более популярных приборов – микроволновых печей.

Бытовое применение

Ввиду очевидных причин индукционная печь для плавки нечасто используется в быту. Зато технология, описываемая в статье, встречается практически во всех современных домах и квартирах. Это и упомянутые выше микроволновки, и индукционные плиты, и электродуховки.

Рассмотрим, к примеру, плиты. Они нагревают посуду за счет индукционных вихревых токов, вследствие чего разогрев происходит практически мгновенно. Характерно, что включить конфорку, на которой нет посуды, невозможно.

КПД индукционных плит достигает 90%. Для сравнения: у электроплит он составляет примерно 55-65%, а у газовых – не более 30-50%. Но справедливости ради стоит заметить, что для эксплуатации описываемых плит требуется специальная посуда.

Самодельная индукционная печь

Не так давно отечественные радиолюбители наглядно продемонстрирова ли, что индукционную печь можно сделать самому. Сегодня существует масса различных схем и технологий изготовления, мы же привели лишь самые популярные из них, а значит, самые эффективные и простые в выполнении.

Индукционная печь из высокочастотного генератора

Ниже приведена электрическая схема для изготовления самодельного прибора из высокочастотного (27,22 мегагерца) генератора.

Помимо генератора, при сборке потребуются четыре электролампочки высокой мощности и тяжелая лампа для индикатора готовности к работе.

Обратите внимание! Главным отличием печи, сделанной по этой схеме, является ручка конденсатора – в данном случае она располагается снаружи.

Помимо того, металл, находящийся в катушке (индукторе), расплавится в приборе самой незначительной мощности.

При изготовлении необходимо помнить о некоторых важных моментах, влияющих на скорость правления металла. Это:

  • мощность;
  • частота;
  • вихревые потери;
  • интенсивность теплопередачи;
  • потери на гистерезисе.

Устройство будет питаться от стандартной сети в 220 В, но с предварительно установленным выпрямителем. Если печь предназначается для обогрева помещения, то рекомендуется использовать нихромовую спираль, а если для плавки, то графитовые щетки. Ознакомимся с каждой из конструкций более детально.

Видео – Конструкция из сварочного инвертора

Суть конструкции в следующем: устанавливается пара графитовых щеток, а между ними засыпается порошковый гранит, после чего осуществляется подводка к понижающему трансформатору. Характерно, что при выплавке можно не опасаться удара током, т. к. нет необходимости в использовании 220 В.

Технология сборки

Шаг 1. Собирается основа – бокс из шамотного кирпича размером 10х10х18 см, уложенный на огнеупорную плитку.

Шаг 2. Бокс отделывается асбестокартоном. После смачивания водой материал смягчается, что позволяет придавать ему любую форму. При желании конструкцию можно обмотать стальной проволокой.

Обратите внимание! Размеры бокса могут варьироваться в зависимости от мощности трансформатора.

Шаг 3. Оптимальный вариант для печи на графите – трансформатор от сварочного аппарата мощностью 0,63 кВт. Если трансформатор рассчитан на 380 В, то его можно перемотать, хотя многие опытные электрики утверждают, что можно оставить все как есть

Шаг 4. Трансформатор обматывается тонким алюминием – так конструкция не будет сильно греться при эксплуатации.

Шаг 5. Устанавливаются графитовые щетки, на дно бокса устанавливается глиняная подложка – так расплавленный металл не будет растекаться.

Основным преимуществом такой печи является высокая температура, которая подходит даже для плавки платины или палладия. Но среди минусов – быстрый нагрев трансформатора, небольшой объем (за один раз можно выплавить не больше 10 г). По этой причине для плавки больших объемов потребуется иная конструкция.

Итак, для выплавки больших объемов металла потребуется печь с нихромовой проволокой. Принцип работы конструкции достаточно прост: электрический ток подается на нихромовую спираль, та нагревается и плавит металл. В Сети есть масса различных формул для расчета длины проволоки, но все они, в принципе, одинаковые.

Шаг 1. Для спирали используется нихром ø0,3 мм длиной порядка 11 м.

Шаг 2. Проволоку необходимо намотать. Для этого понадобится прямая медная трубка ø5 мм – на нее и наматывается спираль.

Шаг 3. В качестве тигля используется небольшая керамическая труба ø1,6 см и длиной в 15 см. Один конец трубы затыкается асбестовой нитью – так расплавленный металл не будет вытекать.

Шаг 4. После проверки работоспособност и спираль укладывается вокруг трубы. При этом между витками кладется та же асбестовая нить – она предотвратит замыкание и ограничит доступ кислорода.

Шаг 5. Готовая катушка помещается в патрон от лампы высокой мощности. Такие патроны обычно керамические и имеют необходимый размер.

Преимущества подобной конструкции:

  • высокая производительнос ть (до 30 г за один заход);
  • быстрый нагрев (порядка пяти минут) и долгое остывание;
  • удобство в эксплуатации – металл удобно разливать в формочки;
  • оперативная замена спирали в случае перегорания.

Но есть, разумеется, и минусы:

  • нихром перегорает, особенно если спираль плохо изолирована;
  • небезопасность – устройство подключается к электросети 220 В.

Обратите внимание! Нельзя добавлять в печку металл, если там уже расплавлена предыдущая порция. В противном случае весь материал разлетится по помещению, более того, он может травмировать глаза.

В качестве заключения

Как видим, индукционную печь все же можно сделать своими силами. Но если быть откровенным, описанная конструкция (как и все, имеющиеся в Интернете) – это не совсем печь, а лабораторный инвертор Кухтетского. Собрать же полноценную индукционную конструкцию в домашних условиях попросту невозможно.