Адгезия - это что такое? Адгезия: определение. Адгезия покрытий Адгезивный слой

С. А. Ненахов (НПО НЕОХИМ, г. Москва)


Термины адгезионно-клеевой тематики не отнесешь к неологизмам. Так, термин адгезия ввели в 1924 г. Бехольд и Нейман для обозначения специфического молекулярного сцепления в дополнение к господствовавшим тогда представлениям о механическом характере природы склеивания. Появление термина клей в русской лексике относят к XII веку. Тем не менее и сегодня нельзя сказать, что этим терминам присуща специализация значения и семантическая точность даже при использовании их в научной литературе.

Встречающаяся в публикациях и нормативно-технических документах многозначность и неопределенность термина клей и производных от этого термина слов и словосочетаний в основном обусловлена известной терминологической неряшливостью авторов, т. е. это вопрос культуры языка и, может быть, лексикографии. Общепринятые термины клеевой тематики представлены ниже.

Что касается термина адгезия, то многозначность и неопределенность этого термина напоминает путаницу и неразбериху, которая царила в XVII-XVIII веках в фундаментальных понятиях теории теплоты вплоть до тех пор, пока изобретение и применение термометра не сделали возможным четкое разграничение понятий температуры и количества теплоты. Исходя из допустимой аналогии с прошлыми трудностями в формировании понятийного аппарата термодинамики, можно полагать, что и в вопросе адгезии мы имеем дело не столько с проблемой лексической договоренности (конвенционализации) в научном сообществе, сколько с проблемой методологической, а точнее, с аксиоматической проблемой.

Достаточно драматично для своего времени методологическую проблему выразил С.С. Воюцкий, писавший, что существующие теории адгезии рассматривают разные случаи и разные стороны этого явления, и "...единой теории, объясняющей явления адгезии, нет и, вероятно, не может быть. В различных случаях адгезия обусловливается разными механизмами..." . Действительно, по меньшей мере, пять теоретических подходов к механизму адгезии имелись к концу 70-х годов прошлого века: электрическая теория, адсорбционная теория, диффузионная теория, механическая теория и теория слабого граничного слоя. Попытку формального объединения этих теорий предпринял К.В. Ален .

Существующие в литературе многочисленные определения адгезии по семантическим признакам могут быть разделены на три группы. К первой группе отнесем формулировки, определяющие адгезию как процесс (последовательную смену состояний). Ко второй - определяющие как свойство (качество, признак), составляющее отличительную особенность системы. К третьей - определяющие как состояние (внешние или внутренние обстоятельства, в которых находится что-нибудь) системы. Ниже приведены типичные примеры определений.

Адгезия как процесс

"Адгезия (прилипание) - возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение" (П. А. Ребиндер) .

"Адгезия - явление, заключающееся в возникновении физического и/или химического взаимодействия между конденсированными фазами при их молекулярном контакте, приводящее к образованию новой гетерогенной системы" (В. Л. Вакула, Л. М. Притыкин) .

"Адгезия - явление соединения приведенных в контакт поверхностей конденсированных фаз" (Л. М. Притыкин, В. Л. Вакула) .

Примеры такого подхода можно множить. Видно, что здесь адгезия трактуется как процесс в системе из двух конденсированных фаз при их сближении (из бесконечного удаления) до расстояния действия межмолекулярных сил, в результате которого возникает связь между разнородными конденсированными фазами. Надо сказать, что терминами с аналогичной грамматической структурой, этимологически восходящими к латинским корням, действительно, обозначают преимущественно некие процессы, например, адсорбцию, диффузию, сорбцию и т.д. Чтобы не быть голословными, приведем пример из "Физического энциклопедического словаря": "Диффузия - процесс установления внутри фаз равновесного распределения концентраций..." . В отличие от них фонетически близкие грекоязычные по происхождению термины, например, "энергия" и "энтропия" обозначают некую меру. Таким образом, про данный "процессный подход" можно сказать, что здесь семантическое значение термина и его грамматическая форма соответствуют друг другу. Но, с другой стороны, фразы, подобные выражению "кинетика формирования адгезии", тоже нам понятны и не вызывают раздражения.

Адгезия как свойство

"Под адгезией понимают молекулярную связь между поверхностями приведенных в контакт разнородных тел" (А.А. Берлин, В.Е. Басин) [Ю, 11].

"Под адгезией жидкостиподразумевают взаимодействие жидкой и твердой фаз на границе раздела этих фаз" (А.Д. Зимон) .

"Адгезия, прилипание... - связь между приведенными в контакт разнородными поверхностями" (С.С. Воюцкий) .

Б.В. Дерягин с сотрудниками предпринял попытку устранить проблему, разделив процесс и свойство: "Общепринято под адгезией, в отличие от когезии, подразумевать сопротивление нарушению контакта двух разнородных тел. Поэтому явления адгезии естественно относить к поверхностным явлениям, контролируемым поверхностными силами. Для устранения двусмысленности было бы целесообразно термин "прилипание" относить к процессам установления и прогрессивного роста со временем молекулярной связи между двумя телами, термин же "адгезия" применять для обозначения достигнутой прочности этой связи. Таким образом, прилипание в согласии с этимологической основой слова должно обозначать процесс, а адгезия - количественную меру его результата" . Заметим, что с этимологической точки зрения справедлива только первая часть последнего в цитате предложения.

Аналогичные определения в те же годы появляются, например, в англоязычной литературе: С.Wake , Л.-Х.Ли . А. Адамсон, стремясь ограничить многозначность термина, предлагал в узком смысле "под адгезией понимать прочность связи двух соприкасающихся фаз" .

Адгезия как состояние

"Адгезия - такое состояние двух разнородных тел, при котором они удерживаются вместе в тесном межфазном контакте таким образом, что механическая сила или работа могут быть переданы через границу раздела" By Шоухенг) . Отметим, что рамки грамматической структуры термина в этом направлении первыми преодолели англоязычные авторы. Приведенное определение расширяет толкование термина до нового семантического значения - состояния двух разнородных тел. В чем особенность этого состояния? Согласно предложению автора - в наличии межфазного контакта между этими разнородными телами. Такого контакта, что механическая работа может быть передана через границу раздела фаз. Возможность же передачи механической работы через границу раздела означает наличие взаимодействия (силы притяжения, аттракции) между фазами, т.е. данное определение, акцентирующее состояние, по сути, возвращает нас к тому же объекту - межфазной границе и к тому же межфазному взаимодействию.

Подытожим. Во всех трех группах определений речь идет об одном и том же объекте - гетерогенном теле, состоящем из двух разнородных конденсированных контактирующих фаз, при этом тела через границу раздела связаны межмолекулярными силами. Разница между этими группами определений состоит в том, что в первой группе терминов упор делается на процессе возникновения связи или переходе системы в новое состояние - связанное, во второй группе - собственно на наличии связи, мере результата. Наконец, в третьей группе упор делается на состоянии (есть связь, нет связи) и игнорируется процесс.

В современной терминографии, к сожалению, нет единой точки зрения относительно допустимости такой неоднозначности. Специалисты одной школы считают, что однозначность - непременная черта термина . Другие - что многозначность термина не есть доказательство нечеткости языковых понятий , т.е. опереться на терминографию мы не можем. В такой ситуации проще всего - оставить все как есть, поскольку из контекста обычно ясно, о чем идет речь. Педанты предпочтут процессный подход, но время все расставит по местам, а терминология найдет этому объяснение.

Нам представляется, что главная трудность заключается не столько в многозначности приведенных определений - они все о разных сторонах одного и того же явления, сколько в многообразии объектов и явлений, которые пытаются подвести под это определение и рассматривать как явления адгезионные, что и приводит к двусмысленности.

Например, как быть с множеством теорий, объясняющих механизм адгезии? Действительно ли участь адгезии столь печальна, что это явление не может быть описано единой теорией? Не претендуя на детальное рассмотрение всего вопроса, и даже на детальное рассмотрение аксиоматики адгезии, мы здесь лишь выскажем предположение, что число адгезионных теорий может значительно сократиться, если ограничить обычно рассматриваемый круг объектов только теми, о которых действительно идет речь в рассмотренных определениях. Так, если в определении адгезии уточнить, ограничить понятие объекта, а именно отказаться от аморфного словосочетания "разнородные тела (фазы)" в пользу конкретного "несовместимые в термодинамическом смысле фазы", то некоторые теории, числящиеся по классу адгезионных, вьпадут из круга адгезионных проблем.

Например, диффузионная теория. Объекты и явления, описываемые в диффузионной теории, действительно существуют, но это совместимые системы без равновесных межфазных границ, это системы, для которых характерно (в пределе) исчезновение границы раздела, поэтому, строго говоря, их нельзя относить к объектам, рассматриваемым во всех трех приведенных выше группах определений. Конечно, диффузионные процессы многое определяют в поведении (кинетике, равновесных свойствах) совместимых систем. Но эти явления не имеют отношения к адгезии, а скорее, к теории аутогезии или когезии.

Механическая теория адгезии фактически рассматривает системы с разного рода механическими зацеплениями, описание поведения которых при механическом нагружении имеет теоретический и практический смысл, но собственно механические зацепления не имеют отношения к межмолекулярным силам. Конечно, механические зацепления возможны и в реальных адгезионных соединениях. Их вклад в механическую прочность может даже превышать собственно адгезионный вклад, но эта задача относится скорее к учету свойств деформируемых макротел, т. е. к теоретической механике. В соответствии с механической теорией адгезии пазлы также следовало бы отнести к адгезионным объектам.

Теория слабого граничного слоя. В наше время ясно осознано, что вблизи границы раздела фаз происходит перестройка структуры тела. Протяженность этих областей может достигать нескольких десятков микрометров, а сами области характеризоваться другой степенью упаковки молекул, нежели тело в объеме. Согласно этой теории разрушение тела происходит по так называемому слабому слою, который, как правило, локализуется вне собственно границы раздела фаз. Образование этого слоя является следствием действия сил межмолекулярного взаимодействия между фазами, т.е. вторично по отношению к формированию связей на границе раздела несовместимых фаз. В реальных системах разная степень дефектности межфазных слоев способна существенно повлиять на результаты, например, механических испытаний, но это обстоятельство не является ни необходимым, ни достаточным для отнесения теории слабого граничного слоя к теориям адгезии. Скорее, эта теория должна быть отнесена к теориям, объясняющим отклонение от "идеальной" адгезии.

Таким образом, если исходить строго из рассмотренных определений адгезии, то можно констатировать, что единый предмет в определениях адгезии существует - это межфазная граница контактирующих несовместимых фаз. Другое дело, что для описания этого предмета (явления) существуют разные подходы, например, термодинамический. Или в виде молекулярных теорий взаимодействия между макроскопическими телами, например, теория на основе сил Ван-дер-Ваальса, теория на основе потенциала Ленарда-Джонса или теория Лившица, рассматривающая излучаемые телами электромагнитные волны. Эти теории достаточно подробно изложены в ряде монографий, например, в . Другие же теории (механическую и теорию слабого граничного слоя) уместно рассматривать в качестве поправок, учитывающих отклонения (иногда существенные) от идеальной адгезии.

Полемичность изложенного здесь подхода на фоне исторически сложившихся представлений очевидна. Но нам представляется, что система изложенных ограничений (одно из требований аксиоматики) вытекает из всех рассмотренных определений адгезии. Ограничение по объектам и явлениям может помочь отделению вторичных явлений от первичных, помочь отнесению явлений другой, не адгезионной природы к "своей нише". Это и будет означать построение единой и непротиворечивой аксиоматики адгезии и устранение существующей сегодня терминологической двусмысленности.

Словарь

Адгезия (от лат. adhaesio - прилипание, англ. adhesion) - 1) возникновение межмолекулярного взаимодействия между приведенными в контакт разнородными конденсированными фазами; 2) установившееся взаимодействие между фазами на границе раздела и величина, его характеризующая; 3) связанное состояние разнородных фаз (тел), при котором они удерживаются в межфазном контакте.

Абгезив (англ. abhesive) - разделительный материал, предотвращающий адгезию.

Адгезив (англ. adhesive) - 1) клеящее вещество; 2) связующее вещество; 3) клей; 4) липкий; 5) клейкий; 6) материал, соединяющий между собой другие материалы путем сцепления с их поверхностями.

Адгезионный (-ое, -ая) - прилагательное, обозначающее принадлежность некоторого предмета к адгезии, например, адгезионная прочность - прочность адгезионного соединения.

Адгеренд (англ. adherend) - склеиваемый материал, субстрат.

Аутогезия - связь одноименных (совместимых) материалов от момента приведения их в контакт до момента диффузионного исчезновения геометрической границы раздела.

Клей - материал, соединяющий между собой другие материалы путем сцепления с их поверхностями.

Когезия (англ. cohesion) - 1) сцепление между находящимися в контакте поверхностями двух однородных по составу тел; 2) связность; 3) свойство тела, обеспечивающее связывание его частей.

Липкость - сопротивление, оказываемое клеем при отделении его от субстрата.

Промотор - добавка к адгезиву (клею), увеличивающая механическую прочность адгезионных соединений.

Соединение клеевое - соединение двух субстратов (тел) между собой слоем клея.

Субстрат (англ. substrate) - материал, на поверхность которого наносят клей.

Фаза (англ. phase) - однородная обособленная часть системы, отделенная от других частей разграничивающими поверхностями.

"Клеи. Герметики. Технологии" №4, 2007

Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы . Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии , смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: W k =2  , где W k - работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогенной фазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения, адгезия результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: W s = W a S

Таким образом, адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м 2 .

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение  23 . В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + W a =0, W a = - G .

Изменение энергии Гиббса системы в процессе адгезии:

G нач. = 31 + 21 ;

G кон =  23 ;

;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что W k =2 , и умножая правую часть на дробь , получим:

где W k 2, W k 3 - работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность W п .

W п работа, затраченная на разрушение адгезионного соединения . Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей W a , так и работа, затраченная на деформацию компонентов адгезионного соединения W деф :

W п = W a + W деф .

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

    Жидкость остается на поверхности другой фазы в виде капли.

    Капля растекается по поверхности.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия.

Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна  31 . Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно  21 . Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости . При равновесии устанавливается следующее соотношение

- закон Юнга .

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания
. Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 108 0). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, W a = W k .

2. При = 90 0 cos = 0, W a = W k /2 .

3. При =180 0 cos = -1, W a =0 .

Последнее соотношение не реализуется.

Строительный мир зависит от множества физических явлений и свойств, которые являются основой для грамотного соединения материалов различного вида и фактуры. Именно адгезия отвечает за соединение различных веществ между собой. С латинского языка слово переводиться как «прилипание». Адгезия может измеряться и иметь разные значения, в зависимости от поведения молекулярных сеток разных веществ и материалов между собой. Если речь идет о строительных работах, то здесь адгезия часто выступает как «смачиватель» между материалами за счет воды или влажных работ. Это может быть грунтовка, покраска, цемент, клей, раствор или пропитка. Значение адгезии значительно снижается, если происходит усадка материалов.

Строительные работы напрямую связаны с проникновением веществ и материалов друг в друга. Наглядно и быстро увидеть данный процесс можно при малярных обработках, изоляционных техниках, сварочных и паяльных работах. В результате мы видим быстрое прилипание или сцепление материалов между собой. Происходит это не только из-за грамотного проведения работ и профессионализма работников, но и адгезии, которая является основой для связующих молекулярных сеток разных веществ. Понимание этого процесса можно проследить во время перерывов при заливании бетонных конструкций, лакокрасочных работах, посадке декоративной плитки на цемент или клей.

Как её измеряют?

Величина сцепления адгезии измеряется в МПа (мега Паскаль). Единица МПа измеряется в прикладываемой силе в 10 килограмм, которая давит на 1 квадратный сантиметр. Чтобы разобрать это на практике, рассмотрим случай. Клеящий состав в характеристике имеет обозначение в 3 МПа. Это означает, что для приклеивания определенной детали, на 1 кв. см нужно использовать силу или приложить усилие равно 30 килограммам.

Что влияет на неё?

Любая рабочая смесь проходит через различные этапы и процессы, пока полностью не проявит свои заявленные производителем свойства. Пока она схватывается, адгезия может меняться из-за физических процессов, происходящих при высыхании. Также немаловажную роль играет усадка растворной смеси, в результате чего контакт между материалами растягивается и появляются усадочные трещины. В результате такой усадки сцепление материалом между собой на поверхности ослабевает. Например, в реальном строительстве этого хорошо видно при контакте старого бетона с новой кладкой строительных смесей.

Как улучшить свойства?

Многие строительные материалы и вещества по своей природе не имеют возможность сильно схватываться друг с другом. У них разный химический состав и условия образования. Для решения этой проблемы в ремонтных и строительных работах давно припасен целый арсенал техники хитростей, которые помогают улучшать адгезию между материалами. Чаще всего речь идет о целом комплексе работ, которые требуют временных и физических затрат.

В строительстве применяют сразу три способа для улучшения адгезии. К ним относят:

  • Химический. Добавление в материалы специальных примесей, пластификаторов или добавок для получения лучшего эффекта.
  • Физико-химический. Обработка поверхностей специальными составами. Шпаклевка и грунтовка относится к физико-химическому воздействию на «прилипание» материалов друг к другу.
  • Механический . Для улучшения сцепления применяют механическое воздействие в виде шлифовки для появления микроскопических шероховатостей. Также применяют физическое нанесение насечек, абразивную обработку и устранение пыли и грязи из поверхности.

Адгезия основных строительных материалов

Рассмотрим детально, как реагируют материалы друг на друга, которые применяются при строительстве чаще всего.

  • Стекло . Хорошо контактирует с жидкими веществами. Показывает идеальную адгезию с лаками, красками, герметиками, полимерными составами. Жидкое стекло прочно фиксируется с твердыми пористыми материалами
  • Дерево . Идеальная адгезия происходит между деревом и жидкими строительными веществами – битумом, красками и лаками. На цементные растворы реагирует очень плохо. Для связывания дерева с другими строительными материалами используют гипс или алебастр.
  • Бетон . Для кирпичей и бетона главной составляющей успешной адгезии выступает влага. Для получения хорошего результата поверхности необходимо все время смачивать, а жидкие растворы использовать на основе воды. Хорошо реагирует на материалы с пористой и шероховатой структурой. С полимерными веществами контакт происходит значительно хуже.

Заключение:

Явление как адгезия, дает возможность быстро и качество прилипать любым материалам к основанию покрытий других с помощью дополнительных строительных веществ и растворов. Каждый материал проявляет свое качества и свойства при взаимодействии с другими строительными веществами. Способность к адгезии позволяет им прочно взаимодействовать без ухудшения общего строительного процесса.

Адгезия цемента к различным основам (поверхностям), является важной технической характеристикой определяющей следующие возможности. В частности: способность цемента удерживать элементы наполнителя бетона, способность цементной штукатурки «прилипать» и длительное время удерживаться на поверхностях стен выполненных из разных материалов.

Также это способность клея на основе цемента «приклеивать» отделочные и теплоизоляционные материалы (искусственный камень, керамическую плитку, пенополистирол, базальтовую вату и пр.) к кирпичу, бетону, пеноблоку, древесине и другим основам.

Технический смысл адгезии

Слово «Адгезия» в переводе с латинского означает – «прилипание». Имеется ввиду прилипание разнородных или однородных материалов друг к другу. В нашем случае рассматривается «прилипание» растворов на основе цемента: бетон, штукатурка, кладочный раствор, ремонтные составы, клей, другой строительный материал.

Существует три вида адгезии:

  • Физическая. Прилипание происходит на молекулярном уровне. Пример – прилипание магнита к стальной основе.
  • Химическая. Прилипание происходит на атомном уровне. Пример – сваривание и пайка деталей. Также химический смысл имеет адгезия стоматологической пломбы к пульпе зуба.
  • Механическая. Сцепление материалов происходит за счет проникновения адгезива (штукатурка, бетонный раствор, кладочный раствор, клей и т.п.) в поры и шероховатости основы. Пример: оштукатуривание, укладка плитки, окрашивание.

Степень адгезии измеряется в МПа. Цифровое значение обозначает величину силы, которую необходимо приложить для того чтобы оторвать адгезив от основания. Например, на упаковке сухой штукатурной смеси «ЭКО 44» указывается, что минимальная адгезия данного материала к основе составляет 0,5 МПа. Это значит что для того чтобы оторвать слой адгезива от основы понадобиться приложить усилие 5 кг на 1 см2 площади.

Степень адгезии материала к основе разнится от вида и возраста основы. Например старый бетон имеет степень адгезии к новому бетону от 0,9 до 1,0 МПа, в то время как современные сухие строительные смеси способны обеспечивать степень «прилипания» до 2 МПа и более.

Лабораторное испытание степени адгезии сухих строительных смесей осуществляют на специальных образцах, в соответствии с требованиями ГОСТ 31356-2007.

Способы увеличения адгезии

Степень «прилипания» адгезива к основе есть величина «переменная», зависящая от ряда факторов:

  • Чистоты поверхности от загрязнений: пыли, жирных пятен, аморфных масс и пр.
  • Шероховатости поверхности. Например, в силу практически нулевой шероховатости поверхности, величина адгезия цемента к стеклу значительно ниже, чем адгезия цемента к дереву или адгезия цемента к бетону.
  • Усадочные процессы. При усадке адгезива возникают напряжения вызывающие растрескивания и отслоения от основы.

Чтобы получить величину адгезии соответствующей заданным параметрам, необходимо устранить указанные выше факторы. Применяют следующий комплекс мер:

  • Тщательная очистка основы от загрязнений, краски, старой штукатурки и аморфных масс.
  • Увеличение степени шероховатости методом нанесения насечек или шлифовки абразивами. Хороший результат дает обработка гладкой поверхности составом для увеличения шероховатости поверхности «Бетоноконтакт».
  • Применение химического модифицирования бетона специальными добавками, такими как «МС-АДГЕЗИВ» или «SikaLatex®». «МС-АДГЕЗИВ» значительно увеличивает адгезию цементных растворов, в том числе адгезию цемента к металлу и адгезию цемента к краске. Добавка вводится одновременно с затворителем в соответствии с инструкцией по применению. «SikaLatex®» жидкая добавка в цементные растворы улучшающая прочность сцепления, снижающая усадочные процессы. Вводится в затворитель согласно инструкции. С помощью данных добавок получают цемент с высокой адгезией, даже к старому или «гладкому» основанию.
  • Грунтовка основы. Грунтовки глубоко проникают в толщу основы и значительно увеличивают степень сцепления основы с адгезивом. Распространенные бренды: Люксорит-Грунт, Joint Primer, Максбонд Латекс.

Как показывает практика, в частном строительстве применяют не весь комплекс мероприятий, а только некоторые пункты – очистку поверхности и увеличение степени шероховатости. Выполнение этих операций не требуют дополнительных затрат и обеспечивают достаточную степень сцепления при всех видах работ: штукатурке, укладке плитки, отделке пола и т.п.

Методы измерения величины адгезии

Числовое значение степени сцепления основы с адгезивом определяется специальным прибором «ОНИКС-АП» или его аналогами. Техническая суть технологии заключается в приклеивании рабочей пластины прибора на участок штукатурки, плитки, керамогранита и пр. При этом проверяемый участок должен соответствовать габаритам пластины. Соответствие габаритам пластины обеспечивается пропилами адгезива до основания.

Далее прибор начинает нагружать (отрывать) пластину, пока полностью не оторвет ее от основания вместе с испытуемым участком адгезива. По ходу процесса происходит индикация нарастания величины нагрузки. С помощью данного прибора можно измерять степень адгезии от 0 до 10 МПа. Учитывая высокую стоимость данного прибора, около 70 000 рублей, приобретать его для разового использования в частном строительстве экономически нецелесообразно.

Заключение

Производители строительных материалов и торговые сети предлагают потребителям широкий выбор сухих строительных смесей «на все варианты»: штукатурки для наружных и внутренних работ, клеи на основе цемента для плитки, керамогранита, искусственного камня, пенополистирола и других теплоизоляционных и отделочных материалов.

При этом адгезия той или иной смеси соответствует своему назначению при соблюдении инструкции по использованию. Поэтому, если застройщики, используя данные составы, четко придерживаются требований производителя, им не стоит беспокоиться и адгезии – величина адгезии обеспечивается автоматически.

Адгезия, что это такое? И для чего она важна? Давайте попробуем разобраться в нашей статье.

Термин адгезия в переводе с латинского означает «прилипание» и характеризует свойство сцепления поверхностей твердых или жидких тел. Довольно часто характеристики строительных составов, используемых для штукатурных и лакокрасочных работ, оцениваются адгезионными свойствами.

Склеивание тел обеспечивает клеющее вещество – адгезив, представляющее собой полимерную систему. Однако полимер может образоваться в результате химических реакций между склеиваемыми поверхностями после нанесения адгезива. Неполимерные адгезивы представляют органические вещества, к которым относят цементы и припои.

Вещество, на который наносят адгезив, называется субстратом. Глубина проникновения зависит от вида и параметров адгезива, который после отвердения снять без разрушения невозможно. Адгезия – прилипание только верхних слоев материалов. Если процесс проникает во внутрь тел, то происходит когезия.

Для чего важна

В строительстве адгезия гарантирует качество и надежность почти во всех видах работ. Это свойство особенно важно для:

  • лакокрасочных материалов, поскольку обеспечивает их сцепление и удержание;
  • гипсовых и цементно песчаных смесей, качество отделки которыми обеспечивает эстетичность помещений.

Важно знать: только что нанесенный цементный раствор бетона плохо прилипает к старому. Работая со старым бетоном, необходимо применять адгезионные многослойные составы.

Металлургическое производство нуждается в агнезии специальных антикоррозийных составов и смесей. И, кроме того, требуются плохие адгезийные свойства с водой.

В медицине, например, в стоматологии необходима адгезия пломбируемого материала и зуба, чтобы обеспечить его качественную защиту и герметизацию.

Кратко о видах

По взаимодействию с поверхностями различают три адгезии:

  • физическую;
  • химическую;
  • механическую.

Суть физической агнезии в электромагнитном взаимодействии соприкасаемых поверхностей на молекулярном уровне. Всем известно притягивание магнитом частиц, заряженных статическим электричеством.

Химическая связь взаимодействие адгезива с субстратом на атомном уровне с участием катализатора. Она отличается от физической возможностью сцепления поверхностей материалов разной плотности.

Механическая – проникновение адгезива в верхний слой соприкасаемой поверхности с последующим сцеплением. Такой процесс происходит, например, при окрашивании или лакокрасочном покрытии различных материалов.

Обратите внимание: улучшают агнезию мерами, которые обеспечивают сцепляемость: шпаклеванием, грунтовкой, обезжириванием субстрата, шлифованием.

Кроме того, исключают условия, ухудшающие агнезию. К ним относится наличие пыли, смазки или веществ, которые уменьшают пористость поверхности.

Об измерении адгезионной способности материалов

Основной принцип измерения адгезии – определение внешнего усилия, под воздействием которого разрушается адгезийная связь: равномерно, неравномерно или со сдвигом. Под виды разрушения разработаны методы испытаний.

Тестовые испытания проводят прибором адгезиметром по методикам международного и государственного уровня, разработанных для каждого способа разрушения.

Измерение адгезии лакокрасочного покрытия проводится согласно международному стандарту ISO 2409 «Метод решетчатых надрезов» прибором Адгезиметр РН.

В отечественном ГОСТе 15140-78 установлены методы определения адгезии при лакокрасочном покрытии металлических поверхностей. Нормативный документ дает определение сущности каждого метода, перечень аппаратуры для испытаний, описывает подготовку и проведение испытаний.

Значения адгезионных показателей покрытий необходимы для определения трудоемкости работы, обеспечения заданной прочности и надежности. Особенно они важны в строительстве, где часто встречаются контактирующие материалы, разнородные как по химическому составу, так и по условию образования.

Адгезиметры для определения внешнего усилия разными способами представлены в приборостроительном каталоге в разделе Приборы и оборудование контроля качества защитных покрытий.

Что такое адгезия или сцепление материалов, смотрите пояснения в следующем видео: