Дать определение вариационного ряда. Вариационный ряд и его характеристики

Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).

Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

Вариационные ряды бывают дискретными и интервальными.

Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

Дискретный вариационный ряд распределения частот имеет вид:

Частости находятся по формуле , i = 1, 2, …, m .

w 1 + w 2 + … + w m = 1.

Пример 4.1. Для данной совокупности чисел

4, 6, 6, 3, 4, 9, 6, 4, 6, 6

построить дискретные вариационные ряды распределения частот и частостей.

Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

Аналогичную форму записи имеют интервальные ряды.

Интервальный вариационный ряд распределения частот записывается в виде:

Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

Частость находится по формуле , i = 1, 2, …, m .

Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

2.2 Построение интервального ряда

Для построения интервального ряда нужно:

Определить число интервалов;

Определить длину интервалов;

Определить расположение интервалов на оси.

Для определения числа интервалов k существует формула Стерджеса, по которой

,

где n - объем всей совокупности.

Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

Длина интервала h определяется по следующей формуле:

,

где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

Величину называют размахом ряда.

Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
. Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

Решение. Всего n =50 значений вариантов.

Число интервалов задано в условии задачи, т.е. k =5.

Длина интервалов равна
.

Определим границы интервалов:

a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

a 7 = 87,5 +17 = 104,5.

Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

Интервальный ряд распределения частот имеет вид:

Сумма частот равна 6+5+9+11+8+11=50.

Интервальный ряд распределения частостей имеет вид:

Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.


Похожая информация.


Статистические ряды распределения представляют собой простейший вид группировки.

Статистический ряд распределения - это упорядоченное количественное распределение единиц совокупности на однородные группы по варьирующему (атрибутивному или количественному) признаку.

В зависимости от признака, положенного в основу образования групп, различают атрибутивные и вариационные ряды распределения.

Атрибутивными называют ряды распределения, построенные по качественным признакам, т.е. признакам, не имеющим числового выражения. Примером атрибутивного ряда распределения является распределение экономически активного населения РФ по полу в 2010 г. (табл. 3.10).

Таблица 3.10. Распределение экономически активного населения РФ по полу в 2010 г.

Вариационными называются ряды распределения, построенные по количественному признаку, т.е. признаку, имеющему числовое выражение.

Вариационный ряд распределения состоит из двух элементов: вариантов и частот.

Вариантами называют отдельные значения признака, которые он принимает в вариационном ряду.

Частотами являются численности отдельных вариантов или каждой группы вариационного ряда. Частоты показывают, как часто встречаются те или иные значения признака в изучаемой совокупности. Сумма всех частот определяет численность всей совокупности, ее объем.

Частостями называют частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1, или 100%.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения.

Дискретный вариационный ряд распределения - это ряд распределения, в котором группы составлены по признаку, изменяющемуся прерывно, т.е. через определенное число единиц, и принимающему только целые значения. Например, распределение числа построенных квартир в Российской Федерации по числу комнат в них I! 2010 г. (табл. 3.11).

Таблица 3.11. Распределение числа построенных квартир в Российской Федерации по числу комнат в них в 2010 г.

Интервальный вариационный ряд распределения - это ряд распределения, в котором группировочный признак, составляющий основание группировки, может принимать в интервале любые значения, отличающиеся друг от друга на сколь угодно малую величину.

Построение интервальных вариационных рядов целесообразно прежде всего при непрерывной вариации признака (табл. 3.12), а также если дискретная вариация признака проявляется в широких пределах (табл. 3.13), т.е. число вариантов дискретного признака достаточно велико.

Таблица 3.12. Распределение субъектов Южного федерального округа РФ по площади территории на 1 января 2011 г.

Таблица 3.13. Распределение субъектов Центрального федерального округа РФ по числу муниципальных учреждений образования на 1 января 2011 г.

Правила построения рядов распределения аналогичны правилам построения группировки.

Анализ рядов распределения наглядно можно проводить на основе их графического изображения. Для этой цели строят полигон, гистограмму, распределения.

Полигон используют при изображении дискретных вариационных рядов распределения. Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладывают ранжированные значения варьирующего признака, а по оси ординат наносят шкалу для выражения величины частот. Полученные на пересечении оси абсцисс (X) и оси ординат (У) точки соединяют прямыми линиями, в результате чего получают ломаную линию, называемую полигоном частот.

Гистограмму применяют для изображения интервального вариационного ряда. При построении гистограммы на оси абсцисс откладывают величины интервалов, а частоты изображают прямоугольниками, построенными на соответствующих интервалах. Высота столбиков должна быть пропорциональна частотам.

Гистограмма может быть преобразована в полигон распределения, если середины верхних сторон прямоугольников соединить прямыми линиями.

При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах. Плотность распределения - это частота, рассчитанная на единицу ширины интервала,

т.е. сколько единиц в каждой группе приходится па единицу величины интервала.

Для графического изображения вариационных рядов распределения может использоваться кумулятивная кривая. С помощью кумуляты изображают ряд накопленных частот. Накопленные частоты определяют путем последовательного суммирования частот по группам.

При построении кумуляты интервального вариационного ряда по оси абсцисс (X) откладывают варианты ряда, а по оси ординат (У) накопленные частоты, которые наносят на поле графика в виде перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти перпендикуляры соединяют и получают ломаную линию, т.е. кумуляту.

Если при графическом изображении вариационного ряда распределения в виде кумуляты оси X и У поменять местами, то получается огива.

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

    Все значения изучаемого свойства, которые встречаются в изучаемой совокупности, называет значением признака (вариантом, вариантой), а изменение этого значения варьированием . Варианты обозначают малыми буквами латинского алфавита с соответствующими порядковому номеру группы индексами - x i .

    Число, которое показывает, сколько раз встречается каждое значение признака в изучаемой совокупности частотой и обозначают f i . Сумма всех частот ряда равна объему изучаемой совокупности.

    Очень часто нужно подсчитать накопленную частоту (S ). Накопленная частота для каждого значения признака показывают, сколько единиц совокупности имеют значение признака не больше, чем данное значение. Накопленная частота исчисляются путем последовательного прибавления к частоте первого значения признака частот следующих значений признака:

Накопленную частоту начинают рассчитывать с самого первого значения признака

Сумма частостей всегда равна единице или 100 %. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Частоты ряда (f i) в некоторых случаях могут быть заменены частостями (ω i).

Если вариационный ряд дан с неравными интервалами, то для правильного представления о характере распределения необходимо произвести расчет абсолютной или относительной плотности распределения.

    Абсолютная плотность распределения (р f ) представляет собой величину частоты, приходящейся на единицу размера интервала отдельной группы ряда:

р f = f / i.

    Относительная плотность распределения (р ω ) представляет собой величину частости, приходящейся на единицу размера интервала отдельной группы ряда:

р ω = ω / i.

Для рядов с неравными интервалами только эти характеристики дает более правильное представление о характере распределения, чем частота и частость.

    Статистическим распределением выборки называют перечень вариантов (значений признака) и соответствующих им частот или плотностей распределения, относительных частот или относительных плотностей распределения.

Разные ряды распределения характеризуются разным набором частотных характеристик:

минимальным – атрибутивные ряды (частота, частость),

для дискретных используются четыре характеристики (частота, частость, накопленная частота, накопленная частость),

для интервальных – все пять (частота, частость, накопленная частота, накопленная частость, абсолютная и относительная плотности распределения).

  1. Правила построения интервального вариационного ряда

  1. Графическое изображение вариационных рядов

Первым этапом изучения вариационного ряда является построение его графического изображения. Графическое изображение вариационных рядов облегчает их анализ и позволяет судить о форме распределения. Для графического изображения вариационного ряда в статистике строят гистограмму, полигон и кумуляту распределения.

Дискретный вариационный ряд изображается в виде так называемого полигона частот.

Для изображения интервального ряда применяются полигон распределения частот и гистограмма частот.

Строятся графики в прямоугольной системе координат.