Глубинный дренаж. Как самому сделать подземный дренаж

С целью уменьшения заболоченности или просто избыточной влажности почвы, для поддержания оптимального водного баланса почвы на участке применяется осушительная система - глубинный (закрытый) отводящий дренаж или дренаж участка . Глубинный дренаж осуществляет сбор и отведения грунтовых и поверхностных (ливневых и талых) вод за пределы участка. Обычно сначала вода собирается в сборный колодец , который может быть отдельной или общей частью дренажной системы.

Суть метода глубинного дренажа заключается в прокладывании под уклоном обычно 1 см на 1 м, но допустимо до 0,5 см на 1 м системы дрен. Обычно дрены прокладываются с уклном в сторону естественного водостока или к дренажному (перепускному) колодцу. При общей суммарной длине глубинного дренажа участка выше 300 метров, целесобразно использовать дрену - центральный коллектор большего диаметра, а так же для облегчения обслуживания системы установить на центральной дрене несколько смотровых колодцев.

Дрены глубинного дренажа - это система каналов обычно расположенных в виде "елочки". Средняя глубина каналов - 1 м, но в целом зависит от рельефа участка, и задач осушения, например, для газона стоит сделать её чуть меньше, для плодового сада углубить до 1,5 м. В дрены обычно укладываеются дренажные трубы и осуществляется их отсыпка щебнем.

Укладка труб в глубинный дренаж обычно осуществляется на песчанно-гравийную подушку. После укладки труб траншею засыпают щебнем с толщиной слоя 40 см и песком с толщиной слоя в 15 см, в конце дрена присыпается слоем дерна с грунтом.

Для глубинного дренажа участка средняя глубина траншеи (канавы) должна составлять 1 м, внутренний диаметр дренажной трубы должен быть не менее 110 мм, при чем труба должна иметь обмотку из геотекстиля.

Глубинный дренаж особенно актуален для участоков, находящихся в низине, имеющих слабопроницаемую для влаги почву или с уровнем грунтовых вод выше 1,5 м.

При правильной организации дренажа и регулярном его обслуживании срок эксплуатации системы может достигать 30-50 лет. Глубинный дренаж позволяет решать следующие задачи:

1. Защищает фундамент сооружений и инженерное оборудование (при этом в отличии от дренажа участка должен быть выкопан глубже основания фундамента);

2. Препятствует проникновению грунтовых вод и атмосферных осадков и, как следствие, затоплению подвальных и цокольных помещений;

препятствует повышенной сырости в этих местах;

3. Предотвращает гниение корневой системы растений, пучение и вымывание почвы.

4. Уменьшает вероятность образования плесени и грибков, а также появления огромного количества комаров и лягушек на участке.

Abstract

Aim. To determine the efficacy of brand new industrial synthetic material for surgical treatment of patients with complicated anal fistulae and advantages of its use for ligature method of chronic paraproctitis treatment.

Methods. Between 2010 and 2017, 175 patients (average age 47 years) with extra- and transsphincteric fistula were treated with a ligature. The study group consisted of 67 patients treated with rubber seton, comparison group included 108 patients treated with nylon ligature.

Results. The results of clinical use of two seton types for the treatment of rectal fistulae are presented. Rubber thread with circular section as seton was proved to be inexpensive and effective material, advantages of which result from its physical properties. Thus, dissection of muscle tissue due to rubber elasticity becomes more efficient due to the greater reserve of compression than in case of rigid nylon seton, and that reduces the number of contractions. In addition, physical properties of the material, such as its high surface wettability, offer good drainage, and homogeneity of the material not absorbing the fluids, in turn, provides avoidance of the «wick effect» with the spread of infection into the wound. So, the treatment of anorectal fistulae with ligature with the use of rubber seton demonstrates the best therapeutic results and is preferable for patients.

Conclusion. Use of rubber seton in treatment of complicated anal fistulae allows reducing hospital stay, provides better drainage of the surgical wound, and reducing the number of complications and required contractions, thus, minimizing the associated pain syndrome.


Аноректальный свищ, или хронический парапроктит, — результат воспаления параректальной клетчатки, в 90-95% случаев имеющий криптогландулярное происхождение, в 3,5% — травматическое, в 1,5% — связанное с болезнью Крона .

Хронический парапроктит остаётся одной из наиболее актуальных проблем клинической колопроктологии, что обусловлено рядом факторов. Во-первых, это широко распространённая патология: среди всех стационарных больных хирургического профиля пациенты с хроническим парапроктитом составляют от 0,5 до 4%, среди больных с заболеваниями прямой кишки — от 30 до 35% . Во-вторых, последние систематические обзоры и метаанализ свидетельствуют о том, что ни одно из современных оперативных вмешательств при сложных свищах не имеет доказанного преимущества. При этом к сложным свищам относят высокие транс- и экстрасфинктерные фистулы, часто сопровождающиеся множественными боковыми гнойными затёками, хроническим воспалением вблизи свища, а также оперированные ранее. В-третьих, от 8 до 32% больных, оперированных по поводу экстрасфинктерных свищей, подвержены развитию рецидива, а от 30 до 78% — анальной инконтиненции .

Операции при экстра- и транссфинктерных свищах всегда сопряжены с риском, так как возникает необходимость нахождения оптимального соотношения между радикальностью иссечения фистулы во избежание рецидива, с одной стороны, и сохранением целостности анатомических структур и их функций, в первую очередь анального сфинктера для профилактики возникновения анальной инконтиненции — с другой .

К наиболее распространённым операциям при транссфинктерных свищах, -захватывающих более трети наружного сфинктера, и экстрасфинктерных свищах на современном этапе относят иссечение свища с ушиванием волокон сфинктера, иссечение свища с низведением лоскута стенки прямой кишки для закрытия внутреннего свищевого отверстия, устранение свищей с помощью перевязки и пересечения свищевого хода в межсфинктерном пространстве, а также лигатурный метод .

При этом лигатурный метод является древнейшим в оперативном лечении свищей. Разработанный Гиппократом на рубеже V и IV столетия до нашей эры , он до наших дней используется при экстра-сфинктерных свищах и высоких транс-сфинктерных свищах с выраженными рубцовыми и гнойно-инфильтративными изменениями в тканях.

Ликвидация внутреннего отверстия свища происходит за счёт прорезывания тканевого мостика сфинктера лигатурой с миграцией внутреннего отверстия свища в каудальном направлении. За перемещающейся лигатурой щелевидная рана стенки анального канала и анального жома заполняется грануляционной тканью с формированием соединительнотканного рубца. Таким образом, за счёт пролонгированного рассечения стенки кишки концы пересечённого сфинктера успевают фиксироваться в выполнившейся тканями послеоперационной ране, что позволяет избежать их диастаза с развитием анальной инконтиненции.

Для лигатурного метода используют различные виды сетона . Согласно современным понятиям, сетон представляет собой фрагмент инородного материала, пропускаемый через подкожные ткани или кисту с целью обеспечения дренирования или контролируемого пересечения тканей . В качестве сетона при парапроктитах -традиционно используют капроновую или шёлковую нить, то есть лигатуру, откуда и пошло название этого метода. Гиппократ же в качестве сетона использовал конский волос .

Цель исследования — анализ результатов лечения пациентов со сложными свищами прямой кишки лигатурным методом с помощью двух типов сетона.

Проведён анализ результатов лечения 175 больных с экстра- и транссфинктерными (захватывающими более трети наружного сфинктера) свищами в отделении колопроктологии ГАУЗ «Республиканская клиническая больница» МЗ РТ, служащем клинической базой кафедры хирургических болезней №1 ФГБОУ ВО «Казанский государственный медицинский университет» МЗ РФ.

Основную группу (n=67) составили пациенты, в лечении которых, начиная с 2015 по 2017 гг., использовали резиновый сетон с круглым сечением диаметром 1,5 мм. Группу сравнения (n=108) составили пациенты, пролеченные за период 2010-2014 гг. (до внедрения резинового сетона) с использованием капроновой лигатуры. Между группами не было значимых различий по полу, возрасту, характеру основной и сопутствующей патологии. Медиана возраста составила 47 лет (Q1=34; Q3=57), мужчин было 129 (73,7%), женщин — 46 (26,3%). Большинство пациентов были работающими (64,3%).

Экстрасфинктерные свищи диагностированы у 145 (82,9%) больных, транс-сфинктерные — у 30 (17,1%), полные свищи — у 162 (92,6%) пациентов, внутренние неполные — у 13 (7,4%). В 100 (57,1%) наблюдениях обнаружены гнойные затёки по ходу свищей: ишиоректальные — 34,0%, пельвиоректальные — 17,0%, ретроректальные — 16,0%, подкожные — 14,0%, меж-сфинктерные — 12,0%, ректовагинальной перегородки — 7,0%. Чаще встречались зад-ние свищи — у 107 (61,1%), передние — у 63 (36,0%) больных, боковые — у 5 (2,9%). Первую затяжку сетона проводили через 10 дней (Q1=9; Q3=12), после очищения раны на фоне активного роста грануляций.

После первой затяжки резинового сетона пациентов отпускали домой, дальнейшее наблюдение за ними проводили амбулаторно. В повторной затяжке не было необходимости, так как сетон через 12-14 дней прорезывался самостоятельно, либо на этом сроке амбулаторно выполняли пересечение узкого мышечного «мостика» для его удаления.

Затяжки же капронового сетона проводили в стационаре, поскольку на коротких сроках (через 3 дня) после пересечения прилегающих к лигатуре поверхностных мышечных волокон происходило расслабление петли в зоне странгуляционной борозды, что требовало второго, а в 45,1% наблюдений — и третьего затягивания. Это увеличивало медиану продолжительности пребывания больных в стационаре до 19 сут (Q1=14,75; Q3=25) — против 11 (Q1=8; Q3=13; p=0,001) при использовании резинового сетона (рис. 1).

Рис. 1 . Медиана продолжительности пребывания больных в стационаре при использовании капронового и резинового сетонов (сутки), p=0,001

Затяжка любого вида сетона требует адекватного обезболивания не только в момент проведения, но и на протяжении 6-24 ч после неё. Многократные затяжки требовали увеличения кратности введения ненаркотических анальгетиков (6-9 против 3 раз). В группе сравнения у 3 (2,8%) пациентов с задними полными экстрасфинктерными свищами, осложнёнными гнойными затёками, возник рецидив: через 1, 8 мес и 2 года. При этом у первого пациента через месяц после операции потребовались вскрытие и санация гнойного затёка (ишиоректального), у второго и третьего — иссечение свища. В основной же группе рецидивов заболевания не было.

Анальная инконтиненция I степени в раннем послеоперационном периоде отмечена у 11 (10,2%) пациентов в группе сравнения и 4 (6,0%) больных в основной группе, однако во всех наблюдениях она носила кратковременный характер, и в хирургической коррекции не было необходимости.

Преимущества резинового сетона, на наш взгляд, обусловлены рядом его физических свойств. Во-первых, рассечение мышечной ткани благодаря эластичности резины становится более эффективным за счёт большего резерва компрессии, чем у ригидной капроновой нити, что сокращает количество затяжек. Кроме того, физические свойства материала, а именно высокая его поверхностная смачиваемость, обусловливают хорошее дренирование, а однородность материала, не впитывающего жидкость, — отсутствие развития эффекта фитильности с распространением инфекции вглубь раневого пространства.

Вывод

Использование резинового сетона при лигатурном методе лечения сложных параректальных свищей улучшает результаты за счёт сокращения количества необходимых затяжек, минимизации связанного с этим болевого синдрома, эффективного дренирования послеоперационной раны с -уменьшением риска сохранения полостей и затёков по ходу свища, снижения вероятности развития анальной инконтиненции и сокращения продолжительности пребывания больных в стационаре.

Рано или поздно каждый владелец частного дома или коммерческого строения сталкивается с проблемой под названием «грунтовые воды». Их уровень может резко повышаться во время паводков, в межсезонье, когда увеличивается объем талой и осадочной воды.

В отдельных случаях даже хорошая гидроизоляция не дает нужного эффекта.

Подземная влага давит на фундаментные плиты, разрушительно воздействует на монолит и «подтачивает камень», а точнее, подмывает его. Пористый бетон как губка впитывает излишки воды и набухает, в результате чего стены и пол мокнут, дают усадку и трескаются, а в подвале держится запах сырости. В первую очередь от этого явления страдают жители низинных районов и болотистой местности.

Высокий уровень грунтовых вод негативно сказывается на хозяйственных постройках, на качестве тротуарного покрытия, садовых культурах и других элементах инфраструктуры. Понизить его помогает глубинный дренаж – эффективный метод отвода влаги.

Его суть состоит в укладке труб по всему периметру осушаемой территории. Зачастую только эта система позволяет создать комфортные условия для проживания и хозяйственной деятельности на участке. Ее рекомендуется устраивать при залегании вод выше 1,5 метров под землей.

Существует три основных типа глубинного дренажа

Горизонтальный дренаж

Самый распространенный, востребованный способ, хотя и отличается большим объемом земляных работ. Водоотводящие трубы укладывают на заданной глубине под четким углом.

По этим трубам влага уходит естественным (инерционным) путем с участка в специально подготовленные сточные колодцы. Сложность горизонтального комплекса (особенно для новичков) заключается в проведении точных расчетов и замеров перед монтажом.

Метод имеет ряд неоспоримых преимуществ: полная независимость от электросетей и других коммуникаций; простота обслуживания; долгий срок службы; простая, интуитивно понятная технология укладки.

Вертикальный дренаж

Сложная инженерная система, создание которой предполагает большие затраты и привлечение спецтехники, поэтому в частных хозяйствах ее никогда не используют.

В рамках этого метода создают глубинные накопительные шахты, а собранную воду из них откачивают с помощью насосов центрального подземного накопителя.

Комбинированный тип

Совмещает в себе компоненты горизонтальной и вертикальной систем, поэтому крайне сложен в исполнении. Применяется очень редко – в основном, в тяжелых климатических и геологических условиях.

Несмотря на технологические отличия, все три вида глубинного дренажа работают по одному принципу: исключают локальный застой влаги. Вода, проходящая через верхние слои грунта, направляется в накопительные резервуары – трубы и шахты.

Принцип организации горизонтальной системы дренажа

В процессе понадобятся определенные знания и навыки работы со строительными инструментами, а именно нивелиром и дальномером. Они необходимы для планирования и разработки схемы укладки трубопровода. Также нужно учитывать существующий рельеф местности.

К примеру, наблюдая за вектором стока воды во время дождей, можно точно определить уклон участка и место концентрации сточной влаги. На нем ставятся метки, которые помогут составить схему рытья траншей. Для создания горизонтальной системы водоотвода, как правило, берутся мелко перфорированные и гофрированные снаружи ПВХ трубы диаметром 110 мм или 160 мм.

Чтобы избежать образования засоров внутри труб, их рекомендуется обернуть геотекстильным полотном или любым фильтровальным материалом из натурального волокна.

Алгоритм устройства дренажа:

  1. Согласно готовой схеме, по разметке выкопать траншеи.
  2. Уплотнить стенки и дно. В глубоких котлованах, где возможны обвалы, по всему периметру устанавливают шпунт. Если во время работы появляется грунтовая влага, ее уровень нужно обязательно понизить с помощью монтажа иглофильтров.
  3. Дно траншеи по всей длине засыпать слоем песка толщиной около 5 см.
  4. Застелить текстильное полотно шириной больше 1 метра, оставив по краям свободные припуски – они пригодятся для оборачивания труб. Песчаная основа в данном случае уберегает полотно от трения и прямого контакта с камнями и плотным грунтом.
  5. Поверх геотекстиля сформировать гравийную подушку, соблюдая не только оптимальную толщину засыпки, но и нужный уклон. Лучше всего использовать крупный гравий фракцией от 20 до 40 мм, который не задерживает воду и благодаря наличию воздушных полостей сохраняет дополнительное тепло в системе.
  6. Уложить трубы по отметкам уклона. Предпочтительнее монтировать дрены диаметром 160 мм: они способны отводить больший объем влаги, чем трубы диаметром 110 мм, и имеют двойную стенку, которая выдерживает высокие нагрузки при дальнейшем засыпании.
  7. Вывести выходное отверстие трубы в колодец, зафиксировать посредством муфт.
  8. Засыпать дрены крупным гравием и накрыть свободными краями уложенного ранее полотна.
  9. Вывести всю систему, включая ливневую канализацию, в сборный коллектор. Его можно сделать из железобетонных колец или использовать пластиковые емкости. Коллектор оборудовать двумя дренажными насосами: один будет выполнять основную работу, а второй останется в резерве на случай поломки или отключения первого. Насосная станция не даст влаге подняться выше отметки вводной трубы и будет выкачивать ее излишки в специально оборудованные места стока.
  10. Засыпать траншеи крупным речным песком. В песчаной призме желательно выполнить ливневую канализацию.

Несмотря на кажущуюся простоту выполнения, каждый из этапов должен выполняться с учетом технологических требований. Стоит допустить небольшое отклонение параметров – возникает угроза локального заиливания трубы или размытия бетона.

Очевидно, что в результате это приведет к неблагоприятным последствиям и повлечет за собой серьезные траты на капитальную переделку системы, ремонт фундамента и поврежденных конструкций на участке. Поскольку дренажные работы проводятся при открытом фундаменте, специалисты рекомендуют заодно выполнять сопутствующие защитные операции на основании здания: проложить теплый контур, влагоизоляцию, усилить водоотвод шипованной мембраной.

Порядок рытья траншей и установки смотровых колодцев

Как ни странно, простая на первый взгляд вещь – копка траншей – на практике оказывается сложным этапом, на котором часто допускаются грубые ошибки. Здесь не допустим принцип работы «на глаз», траншеи делают строго по разметке, с учетом уклона участка.

Для монтажа ПВХ труб с перфорированными стенками роют каналы шириной не менее 50 см, удобные для дальнейшего создания подушки из щебенки и геотекстиля.

Как мы уже отметили выше, в процессе установки дренажной системы стоит уделить внимание гидроизоляции фундаментных плит и цоколя. Для этой цели идеально подойдут рулонные наплавляемые покрытия и обмазочные смеси. Но наиболее эффективной на сегодняшний день считается двухкомпонентная мастика «жидкая резина» на основе латекса и битума.

Она наносится на бетонную поверхность методом холодного напыления и образует прочную, абсолютно герметичную бесшовную мембрану. Материал имеет высокую адгезию, намертво прилипая к фундаменту как клей. Благодаря предельному коэффициенту эластичности 800%, жидкая резина успешно применяется для обработки динамических узлов.

Помимо траншей, для системы глубинного дренажа необходимы смотровые колодцы. Они позволяют проводить очистку и контролировать состояние труб и ширину их просвета. Если дрены закладываются на глубину менее 3 метров, колодцы можно выполнить из ПВХ труб большого диаметра, а если свыше 3 метров, то лучше использовать железобетонные кольца.

Какие требования предъявляются к монтажу:

  • Расстояние меду двумя соседними колодцами должно быть не более 30 метров;
  • Устанавливать нужно строго по линии стока вод, а также на участках поворота труб;
  • Монтаж проводится перед укладкой дрен в траншеи;
  • Дно каждого колодца должно быть герметизировано, а выходное отверстие снаружи накрыто крышкой, чтобы в систему не попадал мусор.

Есть еще один важный пункт: если вы дренируете почву по периметру дома, то заранее предусмотрите место, куда будет сбрасываться грунтовая вода.

Как правильно сделать гравийную подушку и монтировать трубопровод

В первую очередь нужно задать нужный уклон поверхности траншей. Для этого их засыпают слоем речного песка. После укрепления стенок на дно траншеи выстилается геосинтетик, фильтрующий влагу. Ширина ткани должна быть больше ширины канавы настолько, чтобы свободными краями полотна можно было без натяжки обернуть ПВХ трубу.

Поверх геоткани формируют подушку из гравия фракцией 20-40 мм. Категорически запрещается использовать известняковую породу, поскольку она быстро вымывается. Чтобы на данном этапе соблюсти уклон участка, не стоит превышать толщину гравийного слоя.

Укладку дрен начинают с самой высокой точки участка и выполняют по алгоритму:

  1. Вручную или при помощи тканевой лебедки ПВХ трубы укладывают на гравий отрезками;
  2. На прямых стыках трубы соединяют методом сварки или наложением герметичного хомута. Если дренаж выполняет сторонняя организация, то сварочные работы на порядок увеличат стоимость услуги, поэтому выгоднее обойтись установкой хомутов;
  3. Перпендикулярные трубы соединяют посредством переходных тройников (их диаметр должен быть больше диаметра труб);
  4. На участках входа-выхода системы из смотровых колодцев создают качественную гидроизоляцию;
  5. Конец трубы, который выходит в колодец, плотно фиксируют и герметизируют;
  6. ПВХ трубу по всей протяженности траншеи засыпают гравием мелкой фракции и оборачивают свободными краями лежащего снизу геополотна.

У специалистов, занимающихся устройством дренажа цоколей, есть несколько профессиональных советов, которые, безусловно, будут полезны новичку. Например, при монтаже трубы между ней и стенами траншеи нужно оставлять свободное пространство, иначе возникнет трение и конструкция деформируется.

Нельзя допускать перегибов и натяжения труб. Если нужно изменить угол, просто воспользуйтесь переходником. Хотя, чем меньше поворотов и соединений вы сделаете, тем эффективнее будет функционировать дренажная система – учитывайте этот нюанс еще на стадии планирования прокладки.

Сколько сегодня стоит глубинный дренаж в России

Основной фактор, формирующий цену, – это география. Причем, не всегда высокий уровень грунтовых вод означает максимальную стоимость услуг. Для сравнения: на участке с мягким вязким грунтом и частыми застоями влаги дренажные работы обойдутся заказчику на порядок дешевле, чем на участке, расположенном в низине скалистой или каменистой местности.

Казалось бы, должно быть наоборот? Но во втором случае техническое задание будет сложнее, потребуется кропотливый ручной труд, привлечение спецоборудования и наверняка – проведение сопутствующих земляных работ.

Если обобщить, то цена услуги «под ключ» зависит от:

  • Региона и рельефа местности;
  • Особенностей грунта;
  • Вида глубинного дренажа;
  • Потребности в привлечении спецтехники;
  • Расценок поставщика услуги, наличия системы лояльности и скидок;
  • Стоимости использованных в процессе работы строительных материалов.


Для цитирования: Прокофьева М.И. Современные хирургические подходы к лечению рефрактерной глаукомы (обзор литературы) // РМЖ. Клиническая офтальмология. 2010. №3. С. 104

Modern surgical approaches to treatment of refractory glaucoma. (Literary review)

Modern surgical approaches to treatment
of refractory glaucoma. (Literary review)
M.I. Prokof’eva

Moscow glaucoma center based on 15 Municipal Clinical Hospital named after O.M. Filatov, Moscow

Review is devoted to etiology, pathogenesis and methods of treatment of refractory glaucoma.

На сегодняшний день актуальную проблему представляет собой лечение так называемой рефрактерной глаукомы (РГ), объединившей наиболее тяжелые нозологические формы глаукомы; одной из отличительных особенностей заболевания является устойчивость к проводимому лечению.
Этиопатогенез РГ многообразен, однако в основе его лежат выраженные анатомические изменения дренажной системы глаза, которые значительно затрудняют или делают невозможным отток внутриглазной жидкости. Сюда относятся гониодисгенез II-III степени, грубая дисперсия пигмента на структурах угла передней камеры, неоваскуляризация корня радужной оболочки, выраженные гониосинехии, сращение корня радужки с передней стенкой Шлеммова канала .
Выраженная фибропластическая активность тканей глаза, приводящая к быстрому рубцеванию и облитерации созданных в ходе стандартных фильтрующих операций путей оттока водянистой влаги, является отличительной особенностью РГ .
В силу того, что в основе развития РГ лежат анатомические изменения дренажной системы глаза, медикаментозное и лазерное лечение несмотря на их широкие современные возможности в случае РГ занимают далеко не лидирующее положение .
Приоритетным направлением в нормализации и стабилизации офтальмотонуса при РГ является хирургическое лечение . Однако несмотря на радикальность оперативного вмешательства не всегда удается добиться желаемого результата, что ведет к совершенствованию уже имеющихся хирургических методик и поиску новых.
В настоящее время существует три основных хирургических подхода к лечению больных с РГ: циклодеструктивные вмешательства, стандартная фильтрующая хирургия с интраоперационным применением цитостатиков и дренажная хирургия .
Циклодеструктивные вмешательства
Циклодеструктивные вмешательства направлены на снижение продукции внутриглазной жидкости. Когда речь идет о РГ, они, как правило, являются вторым этапом лечения, если фистулизирующие операции, даже при неоднократном выполнении не приводят к стабильной нормализации внутриглазного давления (ВГД) .
Впервые о деструкции цилиарного тела сообщил Weve H. в 1933 г. Для селективной абляции цилиарных отростков он использовал методику непроникающей диатермии, когда на цилиарное тело воздействовали переменным электрическим током высокой частоты и большой силы, что приводило к повышению температуры в тканях. Из-за выраженной гипотонии, в большом проценте случаев ведущей к фтизису глазного яблока, диатермокоагуляция не получила широкого распространения .
Циклокриодеструкция цилиарного тела впервые была предложена Bietti G. в 1950 г. В результате замораживания тканей происходит значительная дегидратация клеток с последующим механическим повреждением клеточных мембран, а также развитие очага ишемического некроза в результате облитерации микрососудов в замороженной ткани . Циклокриотерапия также связана с рядом осложнений. К ним относят болевой синдром в первые сутки после вмешательства, значительный подъем ВГД как в ходе циклокриопексии, так и в раннем послеоперационном периоде, интенсивные воспалительные реакции, сопровождающиеся выпадением фибрина в переднюю камеру, гифема, гипотония и фтизис глазного яблока .
Альтернативой циклокриотерапии является воздействие на цилиарное тело лазерной энергии. В 1961 г. Weekers R. применил транссклеральную ксеноно-фотокоагуляцию над областью цилиарного тела.
В настоящее время для транссклеральной циклофотокоагуляции используют ИАГ-лазер, полупроводниковый диодный и ксеноновый лазеры. Механизмами, ведущими к снижению ВГД при таком воздействии, принято считать селективную деструкцию цилиарного эпителия и снижение сосудистой перфузии в цилиарных сосудах, ведущей к атрофии цилиарных отростков , а также увеличение оттока за счет транссклеральной фильтрации или усиления увеасклерального оттока .
Транссклеральная циклофотокоагуляция может проводиться как контактным, так и бесконтактным способом. Эффективность транссклеральной фотодеструкции очень вариабельна: Walland M. J. - 37,5%; Signanavel V. - 44%; Quintyn J. C., Grenard N., Hellot M. F. - 25%; Autrata R., Rehurek J. - 41% и может значительно снижаться со временем: если в первый год эффективность составляет 54%, то во второй снижается до 27,7% .
Циклофотокоагуляция также связана с рядом осложнений. Так, при использовании ИАГ-лазера возможен болевой сидром, ожоги и гиперемия конъюнктивы, транзиторный подъем ВГД, воспалительные реакции со стороны передней камеры, снижение остроты зрения, гипотония и фтизис в отдаленные сроки наблюдения . В результате использования диодного лазера к вышеперечисленным осложнениям можно добавить гифему, гемофтальм, развитие фибринозного увеита, случаи злокачественной глаукомы, стафиломы склеры и склеральной перфорации после процедуры .
Транссклеральную фотоциклодеструкцию Pastor S.A., Singh K., Lee D.A. (2001) рекомендуют проводить после неудачной шунтирующей операции, невозможности проведения хирургической операции по состоянию здоровья или как экстренную помощь при угрожающих состояниях, таких как резкая декомпенсация офтальмотонуса при неоваскулярной глаукоме.
Лазерное воздействие на цилиарное тело может осуществляться не только транссклерально, но транспупиллярно и эндоскопически.
При транспупиллярной циклофотодеструкции применяется аргоновый лазер, лазеркоагуляты наносятся непосредственно на отростки цилиарного тела, которые визуализируются с помощью линзы Гольдмана. Использование данной методики предусматривает дилатацию зрачка, что бывает резко затруднено в случае длительного применения миотиков .
Проведение эндоскопической циклофотодеструкции возможно во время ленсэктомии или витрэктомии через pars plana с транспупиллярной визуализацией . Эффективность эндоскопической циклодеструкции составляет от 17 до 43% . Среди осложнений методики выделяют гемофтальм, гипотонию, отслойку сосудистой оболочки, снижение зрения .
Непредсказуемость гипотензивного эффекта и ряд серьезных осложнений как в раннем, так и в позднем послеоперационном периоде после циклодеструктивных вмешательств ограничивают их широкое применение в лечении РГ.
Стандартная фильтрующая хирургия
с интраоперационным применением цитостатиков
В течение последних десятилетий наибольшее распространение в хирургическом лечении глаукомы, независимо от вида и стадии заболевания, получили различные модификации трабекулэктомии, предложенной в 1968 г. J.E. Cairns.
Однако частота рецидивов гипертензии в позднем послеоперационном периоде, связанная с рубцеванием и облитерацией сформированных в ходе вмешательства путей оттока водянистой влаги, послужили толчком для поисков новых вариантов операционной техники, предотвращающих развитие рубцового процесса.
Наиболее значимым достижением последних 20 лет явилось широкое применение так называемых антиметаболитов во время фильтрующей операции.
Первым антиметаболитом был 5-фторурацил, механизм действия которого основан на угнетении синтеза дезоксирибонуклеиновой кислоты, через подавление фермента тимидилатсинтетазы, что, в свою очередь, приводит к снижению пролиферации эписклеральных фибробластов и, возможно, оказывает на них токсическое действие, уменьшая рубцевание в области фильтрационной подушки. Начало применения 5-фторурацила были обнадеживающим. Вскоре, однако, появились сообщения о серьезных осложнениях, связанных с его использованием . Недостатки 5-фторурацила заставили исследователей искать новые антиметаболиты, среди которых наиболее распространенным стал митомицин-С . Он обладает способностью ингибировать синтез ДНК независимо от фазы клеточного цикла, и для достижения эффекта достаточна более короткая интраоперационная аппликация.
Трабекулэктомия при РГ обеспечивает только 20% успеха в первый год после операции, в то время как применение антиметаболитов повышает эффективность до 56% .
Однако несмотря на хороший гипотензивный эффект, использование антиметаболитов может приводить к избыточной фильтрации водянистой влаги в послеоперационном периоде, являясь причиной снижения зрительных функций вследствие гипотонии и симптоматической макулопатии, развития и прогрессирования катаракты. Кератопатия, формирование кистозных фильтрационных подушечек, несостоятельность швов, геморрагическая цилиохориоидальная отслойка, токсическое воздействие на цилиарное тело - осложнения, к которым может приводить интраоперационное применение цитостатиков . А.П. Нестеров (1995) рекомендовал воздерживаться от применения антиметаболитов при выраженном истончении конъюнктивы, у больных с высокой близорукостью и на глазах больных старческого возраста. Согласно Mandal A.K., Prasad K., Naduvilath T.J. (1999) применение цитостатиков может увеличивать риск развития гифемы - 21% и гипертензии - 21%, что по данным исследователей, выше риска при имплантации шунтов. Кроме этого, использование антиметаболитов значительно повышает возможность развития инфекционных осложнений в отдаленном периоде наблюдения .
Абсолютным противопоказаниям к применению цитостатиков можно считать значительные конъюнктивальные и роговичные дефекты. Отмечены случаи помутнения интраокулярной линзы (ИОЛ) после интраоперационного использования митомицина - С, связанные с изменением рН внутриглазной жидкости и отложения кристаллов кальция на ИОЛ (Moreno-Montanes J. 2007).
Дренажная хирургия
Практически единственным способом поддержания тока камерной влаги в условиях выраженной фибробластической активности тканей глаза, приводящей к грубому рубцеванию и облитерации сформированных в ходе операции путей оттока внутриглазной жидкости, является использование дренажных, шунтирующих или клапанных имплантов .
Общая эффективность хирургического использования шунтовых дренажей и предпочтительность другим методикам не оспаривается большинством авторов и колеблется от 35 до 100% .
В развитии дренажной хирургии выделяют три этапа:
1. Транслимбальные дренажи - сетоны (лат. saeta, seta - щетина).
2. Шунты-трубочки.
3. Шунтовые устройства.
Эра применения транслимбальных дренажей (англ. «bristle» - стержень, штифт, вставка) датируется началом прошлого столетия, когда в 1912 г. А. Zorab применил в качестве глаукомного дренажа шелковую нить . Таким образом, дренажные операции, принцип которых был предложен А. Zorab, уже в начале прошлого века использовали в лечении РГ .
Дренаж - монолитный линейный имплантат, предотвращающий адгезию поверхностного склерального лоскута к ложу и тем самым поддерживающий интрасклеральное щелевидное пространство, по которому и осуществляется отток внутриглазной жидкости .
Впоследствии в качестве сетонов использовались различные материалы.
Так, в качестве аутоимплантов, располагавшихся между слоями склеры, использовали радужку, сумку хрусталика, десцеметову оболочку, склеру, мышечную ткань .
К аллопластическим имплантатам относят дренажи из биоматериала «Аллоплант» . Заслуживает внимания использование в качестве аллоимпланта амниотическая мембрана, обладающая антиангиоидными и противовоспалительными свойствами и тормозящая избыточное рубцевание за счет ингибирования активности тромбоцитарного трансформирующего фактора роста .
Среди дренажей из гетерогенных материалов наибольшее распространение получили глаукомные дренажи из лиофилизированного коллагена свиной склеры . Широкое применение коллагеновым дренажам обеспечили высокая биосовместимость в совокупности с высокой гидрофильностью. После полной резорбции такого дренажа через 6-9 мес. с замещением его новообразованной рыхлой соединительной тканью, в склере сохранялся туннель по которому осуществлялся ток камерной влаги . Впоследствии были разработаны модификации коллагеновых дренажей из сополимера коллагена с мономерами акрилового ряда поскольку, как показала практика, полное рассасывание вкладыша и его замещение соединительной тканью все же нежелательно.
Примерами гетерогенных дренажей из небиологических материалов могут служить капроновые и мягкие полиуретановые дренажи , эксплантодренажи из силикона , благородных металлов , тефлоновые дренажи , дренажи, изготовленные из лейкосапфира , ванадиевой стали .
Из материалов, появившихся в последние годы, наиболее широко применяется гидрогель на основе нерассасывающегося монолитного полиакриламида с 90%-ным содержанием воды . Однако инкапсуляция гидрогелевых вкладышей в ряде случаев может приводить к рубцеванию фильтрационной зоны . Поэтому к более эффективным способам применения гидрогеля относится сочетание его с антиметаболитами , дексазоном, гликозаминогликанами , бетаметазоном .
Попытка придания клапанных свойств дренажу из гидрогеля на основе полигидроксиэтилметакрилата с фиксированным содержанием воды была предпринята Мо-роз З.И. (2002). Расположение пор диаметром 15-40 нм в виде сот на фильтрующей полупроницаемой структуре создает определенное сопротивление току жидкости по дренажу, и отток камерной влаги начинается при ВГД свыше 10 мм рт.ст.
Основными достоинствами глаукомных дренажей являются простота конструкции, легкость имплантации, низкий процент осложнений, невысокая стоимость. Однако нередко установка дренажа заканчивается неудачей из-за фиброза, развивающегося вокруг его дистального края . Проблемы, связанные с фиброзированием созданного канала, миграция сетона и эрозия конъюнктивы также ограничивают их применение .
Эра использования глаукомных шунтов-трубочек, обеспечивающих пассивный отток водянистой влаги, позволила добиться достижения более длительного и стойкого снижения офтальмотонуса. В 1959 г. Е. Epstein продемонстрировал возможность имплантации капиллярной трубочки, проксимальный просвет которой оставался открытым со стороны передней камеры. Вокруг дистального конца, находившегося под конъюнктивой, формировалась фильтрационная подушка, которая через несколько недель сокращалась, а наружный просвет трубочки закрывался плотной соединительной тканью.
Дренажи в виде шунтов-трубочек преимущественно из силикона , обеспечивая пассивный отток камерной влаги, неспособны, однако, повлиять на его направленность и интенсивность. Так же как и в случае транслимбальных имплантатов, проблемой коротких шунтов стала облитерация дистального конца трубочки .
Помещение дистального конца глаукомного шунта в экваториально расположенный субтеноновый резервуар позволило защитить его от облитерации субконъюнктивальной рубцовой тканью. Выраженное и длительное снижение ВГД обеспечивалось большим размером резервуара и накоплением в нем внутриглазной жидкости . Наиболее распространенными моделями экваториальных эксплантодренажей стали дренажи A.C. Molteno , G. Baerveldt и S.S. Schocket .
А.С. Molteno (1968) предложил соединить дренажную трубочку с акриловой «тарелкой» диаметром 13 мм. Идея состояла в том, что водянистая влага должна не только оттекать из передней камеры, но и всасываться на довольно большой площади. Наличие «тарелки» было гарантией того, что фильтрационная подушка не будет меньше, чем ее площадь. Использование имплантов с длинными трубочками и фиксация резервуара выше мест прикрепления прямых мышц в экваториальной зоне, позволило избежать формирования «гигантских» фильтрационных подушек, наползавших на роговицу, что было серьезной проблемой имплантов с короткими трубочками, эписклеральные «тарелки» которых подшивали в области хирургического лимба.
Модифицированным вариантом шунта Molteno стал имплантат G. Baerveldt, внедренный в клиническую практику в 1990 г. . Эта бесклапанная конструкция состоит из силиконовой трубочки, заканчивающейся в гибком полидиметилсилоксановом резервуаре толщиной 1 мм, который имплантируется через относительно небольшой разрез конъюнктивы .
Наиболее современным из дренажей Molteno является имплант третьего поколения Molteno-3. Пластина дренажа выполнена из неэластичного материала полипропилена и соединена с эластичной трубочкой. Самих пластин в форме диска бывает одна или две последовательно соединенных, причем вторая может быть еще и двухкамерной. Двухкамерная пластина разделена перегородками на меньшую и большую часть. При повышении давления тенонова капсула над пластиной приподнимается и влага перетекает в большую часть.
Согласно данным Тахчиди Х.П., Метаева С.А., Чегла-кова П.Ю. (2008), клапан Molteno требует от хирурга «натягивания» и подшивания теноновой оболочки над клапаном. От правильности соблюдения данного шага во время операции зависит выраженность гипотонии в раннем послеоперационном периоде. Данная методика хорошо предотвращает избыточную фильтрацию, однако исследователями отмечается, что многое зависит не от дренажа, а от опыта хирурга.
Свойственная в целом шунтам чрезмерная фильтрация в раннем послеоперационном периоде, приводящая к длительной гипотонии, синдрому мелкой передней камеры, макулярному отеку , послужила толчком к созданию глаукомных эксплантодренажей, снабженных клапаном, поддерживающим однонаправленный ток внутриглазной жидкости при определенных значениях офтальмотонуса.
Первым подобным устройством явился клапан Krupin-Denver (1980), состоящий из внутренней (внутрикамерной) супрамидной трубочки, соединенной с наружной (субконъюнктивальной) силиконовой трубкой. Клапанный эффект обусловлен наличием прорезей в запаянном дистальном конце силиконовой трубки. Давление открытия равно 11,0-14,0 мм рт.ст., закрытие происходит при уменьшении ВГД на 1,0-3,0 мм рт.ст. Поскольку прорези нередко зарастали фиброзной тканью, на смену стандартного клапана Krupin-Denver пришли его модификации . Последняя, предложенная T. Krupin в 1994 г., очень напоминает имплант Molteno, снабженный силиконовой трубочкой-клапаном.
В 1993 г. M. Ahmed разработал клапанное устройство, состоявшее из трубочки, соединенной с силиконовым клапаном, заключенным в полипропиленовый корпус-резервуар. Клапанный механизм состоит из двух мембран, работающих на основании эффекта Venturi. Давление открытия составляет 8,0 мм рт.ст.
Уже первый опыт использования клапана AhmedTM подтвердил его способность предотвращать избыточную фильтрацию водянистой влаги в раннем послеоперационном периоде и существенно снизить частоту такого осложнения, как синдром мелкой передней камеры .
Аминулла А.А. (2008), Coleman A.L. (1997), Englert J.A. (1999) приводят данные об успешном применении клапана AhmedTM в детской офтальмологии для лечения врожденной и вторичной (травматической) глаукомы.
Стабилизацию ВГД после имплантации клапана AhmedTM при увеальной глаукоме в 57% случаев на протяжении 2 лет наблюдали Gil-Carrasco F. с соавторами (1998).
Практические результаты исследований показывают, что клапан AhmedTM функционирует больше как «уменьшитель» потока, а не истинный клапан, который должен открываться и закрываться в зависимости от давления. Открывшись первоначально от давления 8-20 мм рт.ст. клапан продолжает функционировать до прекращения потока жидкости . Таким образом, более высокое послеоперационное давление по сравнению с бесклапанными дренажами, по данным исследования, является следствием меньшего просвета дренажной трубочки частично перекрытой эластичной мембраной.
Силиконовый клапан AhmedTM лучше снижает давление, чем пропиленовый клапан AhmedTM, однако, по мнению некоторых авторов, ему присущ более высокий процент осложнений (93). В то же время Ayyala R.S. (2000) в эксперименте было доказано, что минимальная воспалительная реакция при субконъюнктивальной имплантации кроликам пластинок из силикона и полипропилена отмечается именно у силикона.
По данным литературы, процент нормализации ВГД после хирургических вмешательств с применением дренажей варьирует в диапазоне от 20 до 75% .
К осложнениям дренажной хирургии можно отнести гипотонию, ведущую к цилиохориоидальной отслойке, супрахориоидальной геморрагии, гипотонической макулопатии, корнеальной декомпенсации, а также ограничение подвижности глазного яблока и диплопию, эндотелиально-эпителиальную дистрофию .
По данным Leuenberger E.U. (1999), в США ежегодно устанавливается до 6000 шунтирующих и клапанных конструкций, как правило, после двух закончившихся неудачей традиционных гипотензивных операций. Дренирую-щая хирургия используется не только в лечении РГ, но также у пациентов с плохим хирургическим прогнозом - после кератопластики, с рубеозом радужки.
Несмотря на возможные осложнения имплантация дренажей является эффективным методом лечения различных форм РГ. Дальнейшее совершенствование дизайна и материалов имплантов позволит повысить безопасность дренажной хирургии.

Литература
1. Алексеев В. Н., Добромислов А. Н. Осложнения при антиглаукоматозных операциях // Проблемы офтальмологии.- Киев, 1976.
2. Аминулла А. А. Оценка эффективности клапана Ахмеда при рефрактерной глаукоме у детей. // Вестник РГМУ, 2008. - №2. - /61/ - С. 181.
3. Астахов С.Ю., Астахов Ю.С., Брезель Ю.А. Хирургия рефрактерной глаукомы: что мы можем предложить? // Глаукома: теории, тенденции, технологии HRT клуб Россия - 2006. - Сб. статей IV Международной конференции.- М., 2006.- С. 24-29.
4. Астахов Ю.С., Николаенко В.П., Дьяков В.Е. // Использование политетрафторэтиленовых имплантов в офтальмохирургии. Спб.: Фолиант, 2007. 255 с.
5. Бабушкин А. Э. Борьба с рубцеванием в хирургии глаукомы // Вестник офтальмологии 1990г.- № 6. - С. 66-70.
6. Балашова Л. М. Применение субсклеральной лимбэктомии с имплантацией гидрогелевого дренажа и аппликацией цитостатика - антиметаболита митомицина-С для лечения больных с вторичной неоваскулярной глаукомой // VII съезд офтальмологв России: Тез. докл. - М. : Издат. центр «Фёдоров», 2000.- Ч. 1. - С. 102.
7. Бессмертный А.М., Червяков А.Ю. Применение имплантатов в лечении рефрактерной глаукомы // Глаукома. - 2001. - №1. - С. 44-47.
8. Бессмертный А. М. Червяков А. Ю.. Лобыкина Л. Б.// Всероссийский съезд офтальмологов, 7-й: Тезисы докладов. - М., 2000. - Т. 1 - С. 105.
9. Бессмертный А.М., Робустова О.В. Клиническая оценка эффективности комбинированного метода лечения неоваскулярной глаукомы // Глаукома: проблемы и решения: Всерос. науч.-практич. конф.: Материалы. - М., 2004. - С. 273-275.
10. Волков В.В., Бржевский В.В., Ушаков Н.А. Офтальмохирургия с использованием полимеров. - СПб.: Гиппократ, 2003. - 415 с.
11. Еричев В.П. Рефрактерная глаукома: особенности лечения // Вестн. офтальмологии. - 2000.-Т.116, № 5.- С. 8-10.
12. Касимов Э.М., Керимов К.Т. Профилактика избыточного рубцевания склеры у пациентов с открытоугольной глаукомой // Современные аспекты диагностики и лечения заболеваний органа зрения: Сб. тр., Баку, 2001. С. 115-122.
13. Касимов Э.М., Эфендиева М.Э., Джалилова С.Г. «Учебно-ме-тодическое пособие по глаукоме» Баку, «Чинар-Чап», 66545, 2007, с. 176-205.
14. Качанов А.Б. Диодлазерная транссклеральная циклокоагуляция в лечении различных форм глауком и офтальмогипертензий: Автореф. дис …. канд. мед. наук - М., 1995.
15. Кашинцева Л. Т., Темощенко В.Д., Мельник Л.С., Самыко С. В. Основные осложнения при хирургическом лечении открытоугольной глаукомы // Офтальмол. журн. - 1996.- № 5-6. - С. 257-261.
16. Козлов В.И., Багров С.Н., Анисимов С.Ю. Непроникающая глубокая склерэктомия с коллагенопластикой // Офтальмо-хирургия.- 1990.- № 3.- С. 44-46.
17. Козлова Т. В., Шапошникова Н. Ф., Скобелева В.Б., Соколов-ская В.Б. Непроникающая хирургия глаукомы: эволюцияметода и перспективы развития: (Обзор лит.) // Офтальмохирургия. - 2000. - №3. - с. 39-53.
18. Корнилаева Г.Г. Комбинированный циклодиализ с использованием аллотрансплантатов - дренажей в лечении вторичной глаукомы //Офтальмохирургия. - 2002. -№1. - С. 13-16.
19. Краснов М.М. Микрохирургия глауком. - М.: Медицина, 1980.- 248 с.
20. Краснов М.М., Каспаров А.А., Мусаев П.И. О результатах интрасклеральной капсулопластики в лечении глаукомы//Вестн. офтальмол. 1984 № 4, С. 12-14.
21. Кумар В., Душин Н.В., Фролов М.А., Сачкова О.Ю., Исуфай Э., Маковецкая И.Е. Вариант гипотензивной операции с применением дренажа, изготовленного из тонкой нити мягкой ванадиевой стали // Глаукома: теории, тенденции, технологии: сб. научных ст. VI Международ. конф. научно-практ. конф.- М., 2008. - С. 335-343.
22. Лапочкин В.И., Свирин А.В., Корчуганова Е.А. Новая операция в лечении рефрактерных глауком - лимбосклерэктомия с клапанным дренированием супрацилиарного пространства // Вестн. офтальмологии. - 2001.-Т.117. № 1.- С. 9-11.
23. Липатова Т.Э., Пхакадзе Г.А. Полимеры в эндопротезировании. - Киев: Наук. думка, 1983. - 158 с.
24. Маложён С.А. Десятилетний опыт использования микродренажей при реконструктивной кератопластике и резистентных к хирургии формах глауком // VII съезд офтальмологв России: Тез. докл. - М. -: Издат. центр «Фёдоров», 2000.- Ч. 1. - с. 166-167.
25. Момозе А., Ксяо-Хонг К., Джунсуке А., Использование лиофилизированной амниотической оболочки человека для лечения поражений поверхности глазного яблока // Офтальмохирургия.- 2001.- №3.- С. 12-14.
26. Мороз З. И., Измайлова С. Б., Сытов Г. А. Новый вид клапанного эксплантодренажа для лечения вторичной глаукомы и его исследования в эксперименте // Офтальмохирургия. - 2001.- № 3. - с. 12-14.
27. Мулдашев Э. Р., Корнилаева Г.Г. Галимова В.У. Осложнённая глаукома: СПб.: Издательский дом «Нева», 2005. - 192 с.
28. Мулдашев Э.Р., Корнилаева Г.Г., Муслимов С.А. Рекон-структивно-регенеративный подход в лечении вторичной глаукомы // IV Российский симпозиум по рефракционной и пластической хирургии глаза: Сб. научн. ст. - М., 2002. - С. 235-237.
29. Нестеров А.П. Глаукома. - М.: Медицина, 1995. - 255 с.
30. Робустова О.В., Бессмертный А.М., Червяков А.Ю. Цокло-деструктивные вмешательства в лечении глаукомы // Глаукома. - 2003.- №1.- С. 40-46
31. Сомов Е. Е. Склеропластика. - СПб.: ППМИ, 1995.- 145с.
32. Тахчиди Х.П., Балашевич Л.И., Науменко В.В., Качурин А.Э. Дренирование передней камеры эксплантодренажом из лейкосапфира в хирургии рефрактерных глауком // Глаукома: реальность и перспективы: научно-практ. конф.: сб. научных ст., часть 2., М., 2008. - с. 70-74.
33. Тахчиди Х.П., Иванов Д.И., Бардасов Б.Д. Отдалённые результаты микроинвазивной непроникающей глубокой склерэктомии// Евро-Азиатская конф. по микрохирургии 3-я Материалы// Екатеринбрг 2003 с.90-91.
34. Тахчиди Х. П., Метаев С. А., Чеглаков П. Ю. Сравнительная оценка шунтовых дренажей, доступных в России, в лечении рефрактерной глаукомы // Глаукома. - 2008. - № 1. - с. 52 - 54.
35. Тахчиди Х. П., Чеглаков В. Ю. Результаты лечения пациентов с рефрактерной открытоугольной глаукомой с использованием гидрогелевого дренажа, оснащённого бетаметазоном // Глаукома: теории, тенденции, технологии: сб. научных ст. VI Международ. конф. нау чно-практ. конф.- М., 2008. - с. 593-597.
36. Ушаков Н.А., Сухинина Л. Б., Симакова И. Л., Юмагулова А. Ф. Посттравматическая офтальмогипертензия и глаукома // Современная офтальмология: Рук. для врачей. - СПб.: Питер, 2000. - с. 436-459.
37. Чеглаков Ю. А. Эффективность глубокой склерэктомии с эксплантодренированием в лечении поствоспалительной и посттравматической глукомы // Офтальмохирургия. - 1989.- №3.- с. 41-43.
38. Чеглаков Ю.А., Маклакова И. А., Чеглаков В. Ю. Модификация непроникающей глубокой склерэктомии с применением биодеструктирующего гелеобразного дренажа, оснащённого гикозаминогликанами и дексазоном // Ерошевские чтения: Тр. Всеросс. Конф. - Самара, 2002. - с. 148-149.
39. Чеглаков Ю. А., Хермасси Ш. Модификация глубокой склерэктомии с применением биодеструктирующего дренажа, оснащённого дексазоном//Офтальмохирургия.- 1995.- №1.- с. 48-50.
40. Юмагулова А.Ф. Дренирование полостей глаза при послеожоговой и некоторых других вторичных глаукомах: (Клинич. исслед.): Автореф. дис. … канд. мед. наук. -Л., 1981. - 13 с.
41. Al Faran M. F., Tomey K. F., Al Mutlog F. A. Cyclocryotherapy in selected cases of congenital glaucoma // Ophthalmic. Surg. - 1990.- Vol. 21.- P. 794 - 798.
42. Al Ghamdi S., Al Obeidon S., Tomey K. E., Al Jodoon I. Transscleral neodymium YAG cyclophotocoagulation for end stage glaucoma and painful blind eyes // Ophthalmic Surg. - 1993.- Vol. 24. - № 8.- P. 835.
43. A-Haddad C. E., Freedman S. E. Endoscopic laser cyclophotocoagulation in pediatric glaucoma with corneal opacities // AAPOS.- 2007. - Vol. 11.- № 1.- P. 23 - 28.
Anand N., Atherley C. Deep sclerectomy augmented with mitomycin C // Eye.- 2005.- № 4.- P. 442 - 450.
44. Ansari E., Gandhewar J. Long-term efticacy and visual acuity following transscleral diode laser photocoagulation in cases of refractory and non- refractory glaucoma // Eye. - 2007. - Vol. 21.- № 7. - P. 936 - 940.
45. Ataullah S., Biswas S., Artes P. H. Long term results of diode laser cycloablation in complex glaucoma using the Zeiss Visulac II system // Br. J. Ophthalmol. - 2002.- Vol. 86. - № 1. - P. 39 - 42.
46. Autrata R., Rehurek J. Long-term results of transscleral cyclophotocoagulation in refractory pediatric glaucoma patients // Ophthalmologica.- 2003.- Vol. 217. -№ 6.- P. 393 - 400.
47. Ayyala R. S. , Harman L. E., Michelini-Norris B. Compration of different biomaterials for glaucoma drainage devices // Arch. Ophthalmol. - 1999.- Vol. 117, №2.- P. 233-236.
48. Azuara-Blanco A., Dua H. S. Malignant glaucoma after diode laser cyclophotocoagulation // Amer. J. Ophthalmol. - 1999.- Vol.127.- № 4.- P. 467 - 469.
49. Baerveldt G., Minckler D. S., Mills R. P. Implantation of drainage devices. Glaucoma surgical techniques. // Ophthalmol. Monographs. - 1991. - Vol. 4. - P. 180.
50. Belcher C. D. Filtering operations - an overview // Glaucoma surgery / Ed by J. V. Thomas et. al.- St. Louis etc. : Mosby, 1992.- P. 17-25.
51. Bellows A. R. Cyclocryotherapy: Its role the treatment of glaucoma // Perspect. Ophthalmol.. - 1980.- Vol. 4. - P. 139.
52. Benson M. T., Nelson M. E. Cyclocryotherapy: a review of cases over a 10 year period // Br. J. Ophthalmol. - 1990.- Vol. 74.- № 2.- P. 103-105.
53. Bhatia L. S., Chen T. C. New Ahmed valve design // Int. Ophthalmol. Clin. - 2004.- Vol. 44.- № 1.- P. 123-138.
54. Bhola R.M., Prasad S., McCormic A.G. Pupillary distorsion and staphyloma following transscleral contact diode laser cyclophotocoagulation: a clinicopathological study of three patients // Eye.- 2001.- Vol. 15.- No. 4.- P. 453-457.
55. Bietti G., Surgical intervention on the ciliary body. New trend for the relief of glaucoma // JAMA. - 1950.- Vol. 142.- P. 889.
56. Bloom P.A., Tsai J.C., Sharma K. «Cyclodiode». Transscleral diode laser cyclophotocoagulation in the treatment of advanced refractory glaucoma // Ophthalmology.- 1997.- Vol. 104.- No. 9.- P. 1508-1519.
57. Cairns J. Trabeculoectomy. //Amer. J. Ophthalmol.- 1968.- Vol.66.- P. 673-679.
58. Caprioli J., Seors M. Regulation of intraocular pressure during cyclocryotherapy for advanced glaucoma. // Amer. J. Ophthalmol. - 1986.- Vol.101.- P. 542.
59. Chee C.R., Snead M. P., Scott J. D. Cyclocryotherapy for chronic glaucoma after vitreretinal surgery // Eye. - 1994.- Vol. 8.- P. 414 - 418.
60. Chen C.W., Huang H.T., Bair J., Lee C. Trabeculectomy with simultaneous topical application of mitomycin-C in refractory glaucoma // J. Ocul. Pharmacol.- 1990.-Vol.6.-P. 175-182.
61. Chen C.W., Huang H.T., Sheu M.M. Enhancement of IOP control effect of trabeculectomy by local application of anticancer drug // Acta Ophthalmol. Scand. - 1986. - Vol. 25. - P. 1487-1491.
62. Chiou A. G.-Y., Mermoud A., Underdahl J. P., Schnyder C.C. An ultrasound biomicroscopic study of eyes after deep sclerectomy with collagen implant // Ophthalmology.- 1998.-Vol. 105, №4.-P. 746-750.
63. Cohen J.S. Cataract, IOL and filtering surgery with intraoperative application of mitomycin C, a preliminary study // ARVO Abstract. // Invest. Ophthalmol. Vis. Sci. - 1992. - Vol. 34, № 4, Suppl. - p. 1391.
64. Coleman A. L. Hill R., Wilson M. R. Initial clinical experience with the Ahmed Glaucoma Valve implant // Am. J. Ophthalmol. - 1995.- Vol.120.- № 1.- P. 23-31.
65. Coleman A. L. Smyth R., Wilson M. R., Tam M. Initial clinical experience with the Ahmed glaucoma valve implant in pediatric patients // Arch. Ophthalmol. - 1997.- Vol. 115.- № 2 .- P. 186 - 191.
66. de Guzman M. H., Valencia A., Farinelli A. C. Pars plana insertion of glaucoma drainage devices for refractory glaucoma // Clin. Experiment. Ophthalmol. - 2006. - Vol. 34. -№ 2. - P. 102 - 107.
67. Demailly P., Jeanteur-Lunel M.N. Berkani M. La sclerectomie profonde non perforante associee a la pose dyun implant de collagene dans le glaucoma primitive a angle ouvert. Resultats retrospectives a moyen terme // J. Fr. Ophthalmol.- 1996.- Vol. 19, № 11.- P. 659-666.
68. Dickens C. L., Nguyen N., Moro J. S. Long-term results of noncontact transscleral neodymium YAG cyclophotocoagulation // Ophthalmology. - 1995. - Vol. 102.- № 2.- P.1777 - 1781.
69. Egbert P.R., Fiadoyor S., Budenz D.L. Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma // Arch. Ophthalmol.- 2001.- Vol. 119.- No. 3.- P. 345-350.
70. Eid T. E., Katz L. J., Spaeth G. L. Auqsburger J. J. Tube-shunt surgery YAG cyclophotocoagulation in the management of neovascular glaucoma // Ophthalmology.- 1997.- Vol. 104. - № 10 - P. 1692 - 1700.
71. England C., van der Zypen E., Frankhouser F., Kwosniewska S. Ultrastructure of the rabbit ciliary body following transscleral cyclophotocoagulation with the free-running Nd:YAG laser Preliminary findings // Laser Ophthalmol.- 1986.- Vol. 1.- P. 61.
72. Englert J.A., Freedman S.F., Cox T.A. // Am. J. Ophthalmol. - 1999. - Vol.127, N 1. - P. 34-42.
73. Epstein E. Fibrosing response to aqueous: its relation to glaucoma // Br. J. Ophthalmol. - 1959. - Vol. 43. - P.641.
74. Fechter H.P., Parrish R.K. Preventing and treating complications of Baerveldt glaucoma drainage device surgery // Int. Ophthalmol. Clin. - 2004. - Vol. 44, № 2. - P. 107-136.
75. Ferry A. P. Histopathologic on human eyes following cyclocryotherapy for glaucoma // Trans. Am. Acad. Ophthalmol. - 1977. - Vol. 83. - P. 90.
76. Fleishman J.A., Schwartz M., Dixon J.A. Argonlaser endophotocoagulation. An intraoperative trans-pars plana technique // Arch. Ophthalmol.- 1981.- Vol. 99.- P. 1610.
77. Fujishima H., Shimazaki J., Shinozaki N., Tsubota K. Trabeculectomy with the use of amniotic membrane for uncontrollable glaucoma // Ophthalmic Surg. Lasers.- 1998.- Vol. 29, № 5.- P.428-431.
78. Geyer O., Michaeli-Cohen A., Silver D. M. The mechanism of intraocular pressure rise during cyclocryotherapy // Invest. Ophthalmol. Vis. Sci. - 1997. - Vol. 38. -№ 5. - P. 1012 - 1017.
79. Gil-Carrasco F., Salinas-VanOrman E., Recillas-Gispert C. Ahmed valve implant for uncontrolled uveitic glaucoma // Ocul. Immunol. Inflamm. - 1998. - Vol. 6.- № 1. - P. 27-37.
80. Hampton C., Shilds M. B., Miler K. N., Blasini M. Evaluation of a photocoll. for transscleral neodymium: cyclophotocoagulation in one hundred patients // Ophthalmology. - 1990. - Vol. 97. - P. 910.
81. Herde J. Zur relevanz der langzeitkontrolle der zyclokryokoagulation // Ophthalmologe.- 1999.- Bd. 96.- № 11.- P. 772 - 776.
82. Heuring A. H., Hutz W. W., Haffman P. C., Eckhardt H. B. Zyclokryokoagulation bei neovaskularisierun gs glaucomen and nicht- neovaskularisierun gs glaucomen // Klin. Monatsbl. Augenheilkd.- 1998.- Bd. 213.- № 4.- S. 213-219.
83. Ho C. L., Wong E. Y., Chew P. T. Effect diode laser contact transscleral pars plana photocoagulation of intraocular pressure in glaucoma // Clin. Experiment. Ophthalmol. - 2002. - Vol. 30. -№ 5. - P. 343 - 347.
84. Honrubia F. M., Gomez M. L., Grijalbo M. P. Long-term results of silicone tube in filtering surgery for eyes with neovascular glaucoma // Amer. J. Ophthalmol.- 1984.- Vol. 97. -№ 4.- P. 501-504.
85. Huang M. C., Netland P. A., Coleman A. L. Intermediate-term clinical experience the Ahmed glaucoma valve implant // Am. J. Ophthalmol. - 1999.- Vol.127.- № 1.- P. 27-33.
86. Hurvitz L.M. Corneal opacification after 5-fluorouracil injections // Ophthalmic. Surg. - 1994. - Vol 25, № 2. - P.130.
87. Jenning B.J., Mathews D. E. Complications of neodymium:YAG cyclophotocoagulation in the treatment of open-angle glaucoma // Optom. Vis. Sci. - 1999.- Vol. 76.- № 10. - P. 686 - 691.
88. Kim D. D., Moster M. R. Transpupillary argon laser cyclophotocoagulation in the treatment of traumatic glaucoma // Glaucoma. - 1999. -Vol. 8. - № 5. - P. 340 - 341.
89. Kitazawa Y., Suemori-Matsushita H., Yamamoto T., Kawase K. Low-dose and high-dose mitomycin trabeculectomy as an initial surgery in primary open-angle glaucoma // Ophthalmology. - 1993. - Vol. 100, № 11. - P 1624-1628.
90. Khaw P. T., Chang L. Worg T. T. Modulation of Wound healing after glaucoma // Curr. Opin. Ophthalmol. - 2001. -Vol. 12.- № 2. - P. 143-148.
91. Krupin T., Kaufman P., Mandell A. et al. Filtering valve implant surgery for eyes with neovascular glaucoma // Am. J. Ophthalmol. - 1980. - Vol. 89, № 3. - P. 338-343.
92. Krupin T., Ritch R., Camras C.B. A long Krupin-Denver valve implant attached to a 1800 scleral explant for glaucoma surgery // Ophthalmology.- 1988.- Vol. 95. -№ 9.- P. 1174 - 1180.
93. Law S.K., Nguyen A., Coleman A.L., Caprioli J. Comparison of safety and efficacy between silicone and polypropy lene Ahmed glaucoma valves in refractory glaucoma // Ophthalmology.- 2005.- Vol. 112.- No. 9.- P. 1514-1520.
94. Leuenberger E.U., Grosskreutz C. L., Walton D. S., Pascuale L. R. Advances in aqueous shunting procedures // Int. Ophthalmol. Clin. - 1999.- Vol. 39.- № 1.- P. 139-153.
95. Lie G. J., Mizukawa A., Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation // Ophtalmic Res. - 1994. - Vol. 26.- P. 65.
96. Lieberman M.F., Ewing R.H. Drainage implant surgery for refractory glaucoma // Int. Ophthalmol. Clin.- 1990.-Vol. 30, №3.-P. 198-208.
97. L. Jay Katz, Tube Shunts for Refractory Glaucomas, Duane,s Clinical Ophthalmology, 2003, Vol. 6., Chapter 17.
98. Lloyd M., Baeveldt G., Fellenbaum P., et al Intermidiate-term results of a randomized clinical trial of the 350-versus 5000-mm Baeveldt implant.//Ophthalmology-1994-v.101-p.1456-1463.
99. Lloyd M.A., Baerveldt G., Heur D.K. et al. Initial clinical experience with Baerveldt implant in complicated glaucomas // Ophthalmology. - 1994. Vol. 101, № 4. - P. 640-650.
100. Lotufo D. G. Postoperative complications and visual loss following Molteno implantation // Ophthalmolmic Surg. - 1991.- Vol. 70, № 2-3 .- P. 145 - 154.
101. Mandal A. K., Prasad K., Naduvilath T. J. Surgical result and complication of mitomycin C-augmented trabeculectomy in developmental refractory glaucoma // Ophthalmolic. Surg. Lasers - 1999. - Vol. 30. -№ 6. - P. 473 - 480
102. Melamed S. Aqueous drainage implants // Glaucoma surgery / Ed by J. V. Thomas et. Al.- St. Louis etc. : Mosby, 1992.- P. 83-95.
103. Mermoud A., Salmon J. F., Alexander P. Molteno tube implantation for neovascular glaucoma. Long-term results and factors influencing the outcome // Ophthalmology.- 1993.- Vol. 100. -№ 6.- P. 897 - 902.
104. Milles R., Reynolds A., Emond M., et al. Long-term survival of Molteno glaucoma drainage devices.//Ophthalmology-1996-v.103-p.299-305.
105. Molteno A.C. New implant for drainage in glaucoma. Clinical trial. // Br. J. Ophthalmol. - 1969. - Vol. 53.-№ 3. - P.606-615.
106. Molteno A.C., Bevin T. H., Herbison P., Houliston M. J. Otago glaucoma surgery outcome study: long-term follow-up of cases of primary glaucoma with additional risk factors drained by Molteno implants // Ophthalmology.- 2001.- Vol. 108.- № 12.- P. 2193-2200.
107. Moreno-Montanes J., Palop J. A., Garcia-Gomez P. Intraocular lens opacification after nonpenetrating glaucoma surgery with mitomicin - C // J. Cataract Refract. Surg. - 2007.- Vol. 33. - № 1.- P. 139 - 144.
108. Muldoon W.E., Ripple P.H., Wilder H.C.: Platinum implant in glaucoma surgery. // Arch. Ophthalmol - 1951.- Vol. 45.- P. 666.
109. Nicoeus T., Derse M., Schlote T. Die Zuklokryokoagulation in der Behandlung therapie refracter glaucoma: eine retrospective analyse von 185 zyklokryokoagulationen // Klin. Monatsbl. Augenheilkd.- 1999.- Bd. 214.- № 4.- S. 224-230.
110. Nguyen Q. H., Budenz D. L. Parrish R. K. - 2nd. Complications of baerveldt glaucoma drainage implants // Arch. Ophthalmol. - 1998.- Vol. 116.- P. 571 - 575.
111. Omi C. A., De-Almeida G. V., Cohen R. Modified Schocket implant for refractory glaucoma. Experience of 55 cases // Ophthalmology.- 1991.- Vol. 98.- №2.- P. 211-214.
112. Patel A., Thompson J.T., Michels R.G., Quigley H.A. Endolaser treatment of the ciliary body for uncontrolled glaucoma // Ophthalmology.- 1986.- Vol. 93.- P. 825.
113. Pastor S. A., Singh K., Lee D. A. Cyclophotocoagulation: a report by the American Academy of . Ophthalmology // Ophthalmology.- 2001.- Vol. 108. - № 11 - P. 2130 - 2138.
114. Prata J. A., Mermoud A., LaBree L., Minckler D.S. In vitro and in vivo flow characteristics of glaucoma drainage implants // Ophthalmology.- 1995.- Vol. 102. - № 6.- P. 894 - 904.
115. Quigley H. A. Histological and physiological studies of cyclocryotherapy in primate and human eyes // // Am. J. Ophthalmol.- 1976.- Vol. 82.- P. 722.
116. Quintyn J. C., Grenard N., Hellot M. F. Intraocular pressure results of contact transscleral cyclophotocoagulation with Neodymium YAG laser refractory glaucoma // Fr. Ophthalmol. - 2003. - Vol. 26. -№ 8. - P. 808 - 812.
117. Schubert H. D., Aganwala A. Quantitative CW Nd:YAG pars plana transscleral photocoagulation in postmortem eyes // Ophthalmic Surg. - 1990.- Vol. 21.- P. 835.
118. Schubert H. D., Agarwala A., Arbizo V. Changer in aqueous outflow after in vitro neodymiumyttrium aluminum garnet laser cyclophotocoagulation // Invest. Ophthalmol. Vis. Sci.- 1990.- Vol. 31.- № 6.- P. 1834.
119. Sears J.E., Capone A.J., Aaberg T.M., January B. Ciliary body endophotocoagulation during pars plana vitrectomy for pediatric patients with vitreoretinal disoders and glaucoma // Am. J. Ophthalmol.- 1998.- Vol. 126.- No. 5.- P. 723-725.
120. Shields V., Scroggs M., Sloop C. at al. Clinical and histopathologic observations concerning hypotony after trabeculectomy with mitomycin-C // Am. J. Ophthalmol. 1993 Vol.116 P. 673-683.
121. Sidoti P.A., Dunphy T.R., Baerveldt G. et al. Experience with the baerveldt glaucoma implant in treating neovascular glaucoma // Ophthalmology. - 1995. - vol. 102, № 7. - P. 1107-1118.
122. Signanavel V. Diode laser transscleral cyclophotocoagulation in the management of glaucoma in patients with intravitrial silicone oil // Eye. - 2005. - Vol. 19.- № 3. - P. 253 - 257.
123. Sofinski S. J., Tomas J. V., Simmons R. J. Filtering bleb revision techniques // Glaucoma surgery / Ed. By J. V. Tomas et al. - St. Louis etc.: Mosby, 1992.- P. 75 - 82.
124. Spencer A.F., Vernon S.A. «Cyclodiode»: results of a standard protocol // Br. J. Ophthalmol.- 1999.- Vol. 83.- No. 3.- P. 311-316.
125. Stefanson J. An operation for glaucoma // Am. J. Ophthalmol.- 1925.- Vol. 8. P. 681-693.
126. Stewart WC, Brindley GO, Shields MB. Cyclodestructive procedures. In: Ritch R, Shields MB, Krupin T, eds. The Glaucomas,2nd ed.St.Louis:Mosby,1996;Vol. 3,Chap.79
127. Taglia D.P., Perkins T.W., Gangnon R. et al. Comparison of the Ahmed glaucoma valve, the Krupin eye valve with disc and the double-plate Molteno implant //J. Glaucoma. - 2002. - Vol. 11, № 4 . - P. 347-353.
128. Ticho U., Ophir A. Late complications after glaucoma filtering surgery with adjunctive 5-fluorouracil // Am. J. Ophthalmol. - 1993. - Vol. 115, № 4. - P. 506-510.
129. Tonimoto S. A., Brandt J. D. Options in pediatric glaucoma after angle surgery has failed // Curr. Ophthalmol. - 2006. - Vol. 17. -№ 2. - P. 132- 137.
130. Vest E., Rong-Guong W., Raitto C. Transillumination guided cyclocryotherapy of secondary glaucoma // Eur. J. Ophthalmol. - 1992. - Vol. 2. -№ 4. - P. 190 - 195.
131. Wagle N. S., Freedman S. F., Buckley E. G. Long-term outcome of cyclocryotherapy for refractory pediatric glaucoma // Ophthalmology. - 1998. - Vol. 105.- №10.- P.1921 - 1926.
132. Walland M. J. Diode laser cyclophotocoagulation longer term follow up of standardized treatment protocol // Experiment. Ophthalmol. - 2000. - Vol. 28. -№ 4. - P. 263 - 267.
133. Walltan D. S., Grant W. M. Penetrating cyclodiathermy for filtration // Arch. Ophthalmol. - 1970.- Vol. 83. - P. 47.
134. Weekers R., Lovergne G., Watillon M. Effect of photocoagulation of ciliary body ocular tension Amer. J. Ophthalmol.- 1961.- Vol.52.- P. 156.
135. Weve H. Die Zyklodiatermie das Corpus ciliare bei Glaucom // Zentralbl. Ophthalmol. - 1933. - Bd. 29. - s. 562.
136. White T. C. Aqueous shunt implant surgery for refractory glaucoma // Ophthalmic. Nurs. Technol.- 1996.- Vol. 15. - № 1 - P. 7 - 13.
137. Wilkes T. D., Fraunfelder F. T. Principles of cryosurgery // Ophthalmic. Surg. - 1979.- Vol. 10.- -P. 21.
138. Wilson R. P., Cantor L., Katz J., Schmidt C. M., Steinman W. C., Allee S. Aqueous shunts: Molteno versus Schocket // Ophthalmology.- 1992.- Vol. 99. - P. 672 - 678.
139. Wright M. M., Grajewsky A. L., Feuer W. J. Nd:YAG cyclophotocoagulation: out come of treatment for uncontrolled glaucoma // Ophthalmic Surg. - 1991. - Vol. 22.- № 5.- P.279 - 283.
140. Zarbin M.A., Michels R.G., de Bustros S. Endolaser treatment of the ciliary body for severe glaucoma // Ophthalmology.- 1988.- Vol. 95.- P. 1639.
141. Zorab A. The reduction of tension in chronic gkaucoma // Ophthalmoscope. - 1912.- Vol. 10.- P. 258-261.


Стоит задуматься о том, что на вашем участке необходим глубинный дренаж, если он заболочен или располагается в месте с избыточным увлажнением. Например, если участок находится в низине, то без хорошей дренажной системы не обойтись, ведь в низину будет стекать вся талая и дождевая вода. Перед строительством жилого дома в обязательном порядке проверяется уровень грунтовых вод.

Если они протекают недостаточно глубоко, то велик риск подмытия фундамента дома и все того же заболачивания участка, гниения корней высаженных растений и т.д. Качество грунта также имеет решающее значение, так как если в нем преобладает глина, то даже при небольших осадках ваш участок может превратиться в одну большую лужу.

Итак, если вы обнаружили один или несколько факторов, определяющих необходимость укладки глубинной системы дренажа, и приняли решение о ее монтаже, то вы сможете решить следующие немаловажные задачи:

  • Защита не только фундамента своего дома, но и проложенных в грунте инженерных коммуникаций.
  • Препятствование проникновению грунтовых вод в подвальные и цокольные помещения.
  • Снижение уровня влажности не только на участке, но и в самом доме, особенно, на первом этаже.
  • Предотвращение вымывания грунта, его вспучивания, проседания ландшафта и гибели корневой системы деревьев, кустарников и иных растений.
  • Снижение риска появления и размножения на вашем участке болезнетворных бактерий, насекомых (комаров и мошек) и даже лягушек.

Закрытый дренаж – его основные элементы

Итак, устройство подземного дренажа представляет собой комплекс мероприятий, направленных на укладку заглубленных в грунт перфорированных труб для впитывания излишней влаги и установку дренажных колодцев для их обслуживания. Кроме дренажных труб и колодцев одним из основных и наиболее функциональных элементов системы являются дренажные тоннели.

Они предназначены для удаления дождевой воды и ее фильтрации перед сбросом в колодец. Такие тоннели вмещают в себя довольно много воды по сравнению с гравийными траншеями, поэтому их использование в местах стоянок автомобилей наиболее оправдано.

Современные дренажные тоннели могут выдерживать нагрузку примерно в 3 тонны на 1 м 2 !

Однако основой глубинной дренажной системы, все же, являются трубы для дренажа. Всего несколько лет назад они выполнялись из керамики или асбестоцемента, но сегодня им на смену пришел практичный, легкий и удобный в монтаже пластик. Современные перфорированные трубы выполняют одновременно две функции – приема воды и ее отвода.

Тем самым обеспечивается надлежащий водный баланс на вашем участке, и до минимума снижается риск возникновения негативных последствий, связанных с чрезмерным увлажнением грунта. Если в непосредственной близости от вашего дома имеется естественный водоем или иное место, куда может сбрасываться отводимая вода, можно считать, что вам повезло. Единственным нюансом, о котором вам придется позаботиться – это предварительная очистка воды.

Если такого приемника нет, то придется устанавливать дренажные колодцы. Они представляют собой специальные емкости, которые заглубляются в грунт и вбирают в себя влагу, собранную дренажными трубами.

Если ваш участок отличается небольшими размерами, и степень затопления не слишком велика, то вполне можно обойтись одним колодцем. В противном случае их может понадобиться несколько штук. С помощью дренажных колодцев происходит не только распределение воды в системе, но и контроль за ее функционированием.

Устройство глубинного дренажа – соблюдаем технологию выполнения работ

Укладываться закрытый дренаж может в соответствии с той или иной схемой. Чаще всего трубы прокладывают по периметру земельного участка, по его центру или по диагонали. Еще одним способом устройства системы водоотвода является укладка труб «елочкой». Это позволяет быстро и эффективно собирать воду с площади всего участка, не допуская его переувлажнения.

Для прокладки дренажных труб необходимо вырыть траншею соответствующей глубины. Как правило, она зависит от качества грунта и глубины залегания грунтовых вод. Так, для глинистых почв оптимальной глубиной закладки труб является показатель в 60-70 см, а для песчаных – около 1 метра. Рытье траншей и укладка труб, соответственно, осуществляется под легким уклоном в сторону водосборника (дренажного колодца), что позволяет воде без какого-либо вмешательства легко в него стекать.

Перед укладкой дренажных труб на дно траншеи настилают песчано-гравийную "подушку"!

Затем устройство глубинного дренажа предполагает засыпку уложенных труб щебнем и песком. На них насыпается выкопанный предварительно грунт, и укладывается дерн. Таким образом, вы получаете эффективную закрытую (скрытую в толще грунта) систему дренажа вашего участка. Специалисты отмечают, что при устройстве дренажа вы можете столкнуться с рядом проблем, однако многие из них легко устранимы, но потребуют дополнительных затрат.

Например, при отсутствии возможности укладки труб под уклоном придется приобретать и устанавливать дренажный насос. Но эти затраты окупятся довольно быстро, а качественный дренаж будет радовать вас своей работой в течение долгого времени.