Лазерный барьер своими руками. Сам себе инженер Гарин – собираем простую и надёжную лазерную сигнализацию. Какой принцип работы сигнализации с лазерным лучом

Современные системы безопасности развиваются стремительными темпами в связи с повышением общей криминогенной обстановки в мире. Пассивные средства – вневедомственная или личная охрана – уже неактуальны, и в целях защиты себя, своего имущества и бизнеса широко применяются современные системы защиты от злоумышленников, и они постоянно совершенствуются. А комплексное объединение различных систем позволяет более эффективно решить вопрос безопасности и при этом не переплачивать лишние деньги.

Этот вид сигнализации использует передачу радиосигнала, аналогичную тому же стандарту, который применяется при мобильной связи. В комплект входят базовый или контрольный блок, подключённый к любому оператору сотовой связи, и беспроводные датчики. На сим-карту, установленную в блок, и будет поступать тревожный вызов.

Для большей надёжности некоторые производители предусматривают использование двух и трёх сим-карт – на случай, если основная окажется вне зоны доступа. К станции подключаются беспроводные датчики, позволяющие обеспечить полный контроль над помещением. Управление системой осуществляется с помощью смс или кнопками брелоков. При наличии подключённой видеокамеры на электронную почту при срабатывании сигнализации поступает снимок.

Большим плюсом этих устройств является отсутствие проводов и необходимости производить их укладку .

Используются эти сигнализации для охраны дачи, дома, квартиры, гаража, склада, офиса – любой недвижимости.

Важно! Перед тем как выбрать производителя GSM-сигнализации, необходимо определиться, при какой температуре придётся её эксплуатировать и способна ли она работать в режиме, не зависящем от бесперебойной подачи электроэнергии.

Комплексы охраны периметра

Такие системы позволяют выявить и предупредить проникновение злоумышленников на огороженную территорию заблаговременно. Принцип их работы основан на распознавании вибрации или изменения электрического поля.

Комплект защитного устройства включает в себя:

  • датчики различного типа;
  • сенсорный кабель;
  • подсистему оповещения;
  • анализатор движения объекта;
  • компьютер со специальным ПО.

Периметральные устройства могут быть объединены с системами контроля доступа и видеонаблюдения. В случае использования стационарных систем необходимы заграждения для крепления датчиков и кабеля .

Наиболее популярные линии защиты периметра:

  • вибрационные;
  • ёмкостные;
  • радиоволновые;
  • радиолучевые.

Важные требования к устанавливаемой системе:

  • покрытие линии территории и отсутствие мёртвых зон;
  • защита устройства от климатических условий;
  • отсутствие вблизи охраняемой территории железнодорожных путей и деревьев;
  • возможность заземления.

Для защиты от ложных срабатываний используется метеорологический модуль, позволяющий учитывать воздействие атмосферных явлений на оборудование.

Подробнее о системах периметральной сигнализации читайте .

Автономные системы охраны

Это компактная система, имеющая функцию оповещения владельца о незаконном проникновении на территорию. Они подходят для небольших и слабо защищённых объектов, а также на объектах, не имеющих линии связи. просты в управлении, недороги, не имеют абонентской платы в качестве условия работы и не требуют участия оператора для управления системой.

Злоумышленник не сможет отключить автономную сигнализацию самостоятельно, так как она не подключается к бытовой электросети. Питание устройства осуществляется с помощью аккумуляторов различного типа.

Датчики, которые используются при работе автономной охранной системы, бывают:

  • акустические;
  • инфракрасные;
  • вибрационные;
  • герконовые (реагирующие на изменения магнитного поля).

Принцип работы автономной системы охраны: при установке по периметру охраняемого объекта в случае обнаружения движущегося объекта датчики передают информацию на центральный контроллер, издающий звуковой сигнал.

Данные сигнализации делятся на два вида:

  • централизованные – передают информацию с датчиков на центральный пункт охраны;
  • автономные – принимают решения об оповещении самостоятельно, без взаимодействия с контроллерами.

Из минусов данных систем можно выделить уязвимость для электронных сигналов в условиях мегаполиса и помех, создаваемых железобетонными конструкциями.

Лазерные устройства

Принцип её работы предельно прост и основан на фотореле: при пересечении злоумышленником лазерного луча, направленного на специальный фотоэлемент, создаётся преломление, в результате чего реле отключается и срабатывает датчик, затем подаётся сигнал на специальный извещатель. Система может быть дополнительно оснащена сиреной, но чаще при срабатывании приходит сигнал оповещения прямо на пульт дежурного полиции, не слышное злоумышленнику. Это позволяет выиграть время и поймать преступника с поличным.

Используются такие сигнализации для охраны помещений, садовых участков.

Преимущества лазерной охранной системы:

  • мобильность;
  • возможность маскировки.

Из минусов можно назвать высокую стоимость устройства и большой процент ложных срабатываний (птицы, животные). При желании такую систему несложно собрать .

GPS-сигнализация

Этот вид охранной системы базируется на принципах работы систем глобального позиционирования, или спутников. Точность определения местонахождения объекта колеблется от 3 до 20 метров.

Само устройство достаточно компактно, оно часто используется для контроля за живыми объектами: детьми, пожилыми родственниками, домашними животными. А также с его помощью можно защитить от кражи ценности – картину, мебель, книгу.

Широкое распространение получила в разработке охранных систем для защиты авто от вскрытия и угона.

Для охраны помещений в комплекте предусмотрена видеокамера и канал передачи видео на мобильный телефон, также имеется возможность голосовой связи и наличие инфракрасной подсветки для съёмки в темноте.

Данный вид охранной сигнализации не предусматривает прокладку кабеля, а также опережает другие системы по скорости оповещения владельца , что делает её весьма привлекательной. Из минусов можно назвать зависимость от бесперебойной сотовой связи и высокую стоимость.

Инфракрасная сигнализация

Действие этой системы основано на использовании инфракрасных датчиков. При пересечении нарушителем ИК-луча нарушается последовательность импульсов, подаваемых на приёмник, цепь замыкается, и на пульт дежурного поступает сигнал тревоги.

Устройство состоит из:

  • инфракрасных передатчиков и приёмников;
  • блока питания;
  • блоков индикации и сигнализации.

ИК-извещатели подразделяются по принципу действия на:

  • активные;
  • пассивные,

по типу зоны обнаружения – на:

  • объёмные;
  • поверхностные;
  • линейные.

Система инфракрасной защиты в зависимости от модели оснащается датчиком температуры, встроенным микрофоном, выносной или встроенной камерой, громкоговорителем, датчиками удара, перемещения, открытия дверей.

Инфракрасные сигнализации чаще всего используются в системе “Умный дом”.

Правильный выбор охранной сигнализации диктуется как объективными условиями и техническими характеристиками помещения или пространства, нуждающегося в охране, так и стоимостью и многими другими факторами. Консультация специалиста поможет определиться с выбором устройства и станет гарантией спокойствия владельца.

Идея о создании лазерной сигнализация была не новой, только все времени на сборку не находил. И вот, наконец, наступили выходные. В магазине была приобретена готовая простенькая сигнализация для автомобиля за 3$. Компактная пьезоэлектрическая головка, внутри которой собрана сама электрическая схема сигнализации.

При подключении к источнику питания, сигнализация издает очень высокий звук, который напоминает милицейской машины.


Итак, стояла задача изготовить датчик для сигнализации. Передатчик - лазерный диод. В магазине также был приобретен простой красный лазер-указка (1$), затем диод с оптикой был снят из заводского корпуса устройства.

Кнопка с лазера была отпаяна.

Минус лазерного диода подключен напрямую к источнику питания, а плюс через ограничительный резистор 30 ом подключен к источнику питания. Источником питания служит импульсный БП от DVD проигрывателя, поскольку блок выдает нужное нам напряжение 6 вольт.


Фотодиод использован от фотоаппарата КОДАК. Схема устроена так, что при наличии света - фотодиод не дает транзисторам открыться, поскольку его сопротивление больше, чем сопротивление резистора на 100К, следовательно ток будет протекать через фотоприёмник. Электрическую схему простой сигнализации смотрите на рисунке (кликните для увеличения).

Как только освещение ослабляется или вовсе исчезает, то сопротивление фотодиода увеличивается и ток начинает протекать через резистор 100К на базу первого транзистора и переход открывается, после чего открывается второй транзистор к коллектору которого подключена сигнализация. После срабатывания сигнализации, реле мгновенно отключает лазерный диод, это сделано для того, чтобы после при наличии освещения сигнализация не отключилась, пока вы сами не отключите его.

Реле подойдет любое, я использовал реле от импортного стабилизатора напряжения без каких-либо переделок.

Нужно учесть, что фото- и лазерный диод должны находится на одном уровне так, чтобы луч лазера осветил фотодиод, последний должен находится в темном корпусе, поскольку солнечное освещение мешает правильной работе устройства. Чувствительность к свету зависит от номинала резистор 100К, при уменьшении его сопротивления, датчик будет более чувствителен.

Расстояние между лазерным диодом и фотоприемником может достигать нескольких метров. Когда объект проходит через зону активации датчика, на миг луч лазера падает на его тело и не освещает фотодиод, в этот момент срабатывает сигнализация и одновременно отключается лазер, чтобы потом он не освещал фоторезистор. Данный датчик можно использовать как датчик для включения дворового света, просто нужно поставить второе реле вместо сигнализации, которое и будет включать свет.

Обсудить статью ЭЛЕКТРИЧЕСКАЯ СХЕМА СИГНАЛИЗАЦИИ

Лазерное излучение нашло широкое применение в профессиональных охранных системах. Но нам с радиолюбительской точки логики наиболее интересны лазерные указки красного свечения. Поскольку указка имеет малую мощность излучения, то она безопасна для людей и животных, однако не следует направлять лазерное излучение непосредственно в глаза это может спровоцировать опасное глазное заболевание.

Принцип работы лазерной сигнализации следующий: когда в зону действия луча попадает объект, лазер перестает освещать фотоприемник. Сопротивление последнего резко увеличивается и реле отключается. Контактами реле отключается и лазер. Это вариант самой простой схемы.

Когда лазерный луч воздействует на фоторезистор, то его сопротивление стремится к нулю, а когда лазер отключен, его сопротивление резко и намного увеличивается. Фоторезистор необходимо разместить в закрытом корпусе.

В роли лазера используется готовый модуль с красным излучателем от дешевой китайской указки. Лазерная головка подсоединена к источнику питания через сопротивление 5 ом. Зона активного луча от 10 до 100 метров.

Предлагаю к рассмотрению схему лазерной сигнализации, основа которой компаратор на операционном усилителе TL072. Опорное напряжение формируется делителем напряжения на сопротивлениях R2 и R3 поступает на третий вывод микросхемы TL072, а сравниваемое напряжение на второй вывод с делителя R1 и VD1.

В момент прерывания лазерного луча, напряжение на втором выводе компаратора резко уменьшается, относительно третьего вывода, в результате чего на выходе ОУ появляется сигнал, который может управлять сиреной или другим исполнительным устройством.

Сопротивление R4 нужно для защиты от самопроизвольного срабатывания, если на обоих входах ОУ равное напряжение. Емкость C1 защищает срабатывание устройства от кратковременного прерывания луча, например, от насекомых.

Корпус лазерной головки должен быть светонепроницаемым. Его можно склеить из черного полистирола. Во избежание боковой подсветки к "окну" фотодиода рекомендуется приклеить бленду. Ее можно изготовить в виде "колодца" квадратного сечения из того же полистирола. Фотоэлемент можно закрыть красным светофильтром он мало ослабит излучение лазера. Для защиты от сильных электрических помех головку помещаем в металлический экран.

Это схема была подробно описана в журнале радио №7 за 2002 год, скачать и ознакомится со статьей вы его можете щелкнув по зеленой стрелочке.

Эта схема работает как охранная система, и является датчиком пересечения злоумышленником лазерного луча. Схема состоит из двух основных частей: фотореле (VT1, VT2) и реле времени (VT3, VT4).


Если лазерный пучек попадает фоторезистор, то реле KV1 отключено, а при прерывание луча, реле сработает, своим контактом KV1.1 включит реле времени и опять вернется в начальное состояние. Реле времени работает по следующему алгоритму. В начальный момент, когда контакт KV1.1 разомкнут напряжение на конденсаторе C1 стремится к нулю, а транзисторы VT3 и VT4 закрыты, ток через обмотку реле KV2 не проходит и его контакты, разомкнуты. При срабатывании реле KV1 конденсатор C1 заряжается и сразу же начнет разряжаться через эмиттерный переход третьего транзистора и сопротивления R8, при этом транзисторы VT3 и VT4 открываются, реле KV2 включится и своими контактами подсоединит исполнительный механизм. По окончанию процесса разряда конденсатора схема возвращается в начальное состояние. Сопротивлением R6 можно регулировать временную задержку.

Эта схема световой сигнализации срабатывает при резком падении уровня освещения датчика, запуская при этом звуковой сигнал тревоги. Устройство не срабатывает при плавном изменении яркости. Чтобы увеличить ресурс батареи питания, звуковой сигнал звуковой сигнал тревоги звучит от одной до десяти секунд, время звучания можно регулировать с помощью построечного сопротивления R5.


В качестве источника света желательно использовать лазерное излучение, но в крайнем случае подойдет и обычное освещение, но схема будет работать гораздо хуже. Чувствительность схемы можно изменять сопротивлением R1. Датчик света является обычный фоторезистор, сопротивление которого минимально при освещении, и максимально при затемнении. Так как микросхема таймер 555 имеет малое энергопотребление, схема сигнализации в дежурном режиме потребляет около 0.5mA.

Этот практически простейший вариант состоит из двух цепей: цепи излучения и приема луча. В схему приемника входит электромагнитное реле для подсоединения внешней сигнализации.


Схема лазерного излучателя состоит из красного Laser светодиода с длиной волны 650 нм и мощностью 5 мВт. LD1 запитан от источника напряжением 5 В. Последовательно с ним подключены два вспомогательных элемента: полупроводниковый диод D1 (1N4007) и сопротивление R1 номиналом 62 Ом. LD1 можно позаимствовать из Laser указки.

Схема приемника состоит из фоторезистора, который управляет реле, с помощью тиристора T1 (BT169). D2 (1N4007) защищает схему от противо-ЭДС импульса катушки реле, когда тиристор T1 отключается.

Пример установки лазерной растяжки-сигнализации показан в левом углу рисунка выше.

В основе схемы применена также идея с лазерной головкой красного цвета из лазерной указки в роли источника света.


Для исключения возможности ложного срабатывания в схеме имеется временная задержка. При необходимости ее увеличения, надо добавить емкости C1 или увеличить значение переменных сопротивлений R2 и R3. Вместо таймера NE555 можно взять его отечественный аналог КР1006ВИ1. Для исключения попадания прямых солнечных лучей в фототранзистор, его желательно расположить в трубке подходящего диаметра в зависимости от корпуса фотоэлемента и длинной не менее 25 см. Торец закрываем прозрачным стеклом для защиты от разной живности. Внутреннюю поверхность трубки можно покрасить в темный цвет.

Альтернативой тепловым датчикам на современном рынке сигнализаций является ни что иное, как лазер. Подобные системы используются для охраны индустриальных, военных и банковских объектов.

В быту лазерная сигнализация пока не нашла широкого применения, однако, если есть растущие из нужного места руки и базовые навыки обращения с паяльником, можно самостоятельно сделать вполне работоспособный образец или заказать готовую модель.

Лазерная сигнализация – это специальное чувствительное устройство, простая схема которого основывается на взаимодействии лазерного луча и сирены. Пересекая лазерную «растяжку» срабатывает сигнализация, которую слышно в радиусе 100 метров . Она предназначена как для сигнала тревоги для охраны, так и для отпугивания преступников. Ещё существует смс-информирование или отправка голосового сообщения в качестве уведомления об опасности. Отметим, что редко используют лазерный сигнал из-за потери мощности и зависимости от метеоусловий.

Базовые блоки

Лазерный извещатель состоит из следующих элементов:

  • генератора;
  • блока питания;
  • лазера;
  • реле;
  • цифровой микросхемы;
  • фотоэлемента;
  • звуковой извещатель (для пущего эффекта может применяться и светодиодная лампочка).

Обычно устанавливаю такой агрегат ближе к полу на расстоянии в 25-35 см, чтобы особо невнимательные грабители либо не заметили его, либо не смогли свободно проползти под ним или перепрыгнуть.

Закрепляют лазер, блок питания и реле с одной стороны, а фотоэлемент крепится на другой стене так, чтобы луч попадал на линзу.

Когда охранная сигнализация данного типа задействована, луч проходит по прямой линии к фотоэлементу. Так как пучок света преодолевает большое расстояние и не рассеивается, то его можно отражать неопределённое количество раз при помощи обычных зеркальных поверхностей , направленных под определённым углом друг к другу. Это помогает создать запутанный лабиринт, пройти который, не задев такую «растяжку», практически невозможно.

Если вор-неудачник пересечёт луч, сигнал не поступает к фотоэлементу, возникает сопротивление и реле блокируется. Таким образом реле передает сигнал резистору, а последний - извещателю.

Сразу после нарушения в зоне активации лазер также прекращает работу , чтобы не задействовать фотоэлемент снова, иначе сигнал тревоги прервётся. Полностью выключить сигнализацию можно лишь отключив питание.

Чтобы сигнализация не срабатывала от обычных солнечных лучей или иных источников света фоторезистор имеет специальную изоляцию.

Схемы

На основе контроллера Arduino

Для сборки схемы понадобится детский лазер и фоторезистор.

На лазере есть кнопка, которая включает свечение. Вот пошаговая инструкция сборки настоящей, вполне работоспособной сигнализации.

  1. Разберите лазер, сняв насадку. Выньте батарейки и вытащите само устройство.
  2. Кнопку необходимо отпаять, после чего продеть в отверстие на корпусе провод и припаять его к кнопке.

Важно! Не допускайте перегрева контактов, все детали очень хрупкие.

  1. Соберите приборчик в обратном порядке.
  2. Фоторезистор необходимо поместить в закрытое пространство, чтобы исключить попадание лучей света (иначе не будет работать днём). Можно использовать коробок или тёмный пластиковый контейнер, укрепив изолентой.
  3. Фоторезистор монтируйте к контроллеру по приведёной схеме. Сопротивление резистора 10 кОм.
  4. Подключите контроллер к компьютеру и запустите среду Arduino IDE .
  5. Залейте следующий скетч

void setup()

Serial.begin(9600);

void loop()

Serial.println(analogRead(foto)); //Выводим на монитор последовательного порта значения с фоторезистора

delay(20);

  1. Установите датчик напротив лазера, добившись прямого попадания луча на фотоэлемент.
  2. В программаторе откройте “монитор последовательного порта” и отследите полученные значения. На их основе определите пороговую величину срабатывания сигнализации.
  3. Светодиод подключите к пину №5 контроллера и добавьте новый скетч.

#define foto 0 //Фотоэлемент подключен к пину 0 (аналоговый вход)

#define led 5 //светодиод подключен к 5 пину

void setup()

Serial.begin(9600);

pinMode(led, OUTPUT);

void loop()

if (analogRead(foto) < 930) //Значение меньше порогового

for (int i=0 ; i < 10 ; i++)

digitalWrite(led , HIGH);

delay(500);

digitalWrite(led , LOW);

delay(500);

else digitalWrite(led , LOW);

Итог. При прерывании луча значение сигнала на последовательном порте падает ниже пороговой величины. При этом контроллер выдаёт сигнал на светодиод, тот начинает мигать.

Смотрите видео демонстрацию работы устройства

Дальнейшее наращивание схемы и подключение дополнительных элементов проводите по вкусу. Отличный вариант – для получения сигнала на свой сотовый.

На тиристоре BT169

Для сборки потребуются следующие элементы.

  • тиристор BT169;
  • конденсатор;
  • резисторы 47k;
  • фоторезистор или LDR;
  • светодиод;
  • бытовой лазер;

Монтаж осуществляется согласно приведенной схеме.

Принцип действия аналогичен предыдущей модели – при прерывании луча фоторезистор блокирует схему. Тиристор работает как переключатель, подавая сигнал на звуковой сигнал или светодиод. Подробности монтажа и использования смотрите на ролике.

На микросхеме NE555

Необходимые элементы

  • piezo buzzer (пищалка);
  • резистор 750 Ом;
  • резистор 130 кОм;
  • микропереключатель;
  • фоторезистор;
  • микросхема интегрального таймера NE555.

Микросхема имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА. Сопротивление резисторов R1 и R2 рассчитывается в зависимости от напряжения питания.

Сборка по схеме не представляет особых затруднений. Следует учесть порядок выводов NE555, чтобы не сжечь микросхему.

За запуск отвечает вторая ножка, на неё нельзя подавать более 30% напряжения питания, за останов шестая ножка (не более 70% напряжения питания).

В остальном схема работает по классическому принципу – при отсутствие сигнала на фоторезисторе, повышается напряжение на шестой ножке, в результате подаётся питание на звуковой сигнал. Выключение с помощью микропереключателя.

Заключение

На основе простого механизма строится мощная и надёжная система охраны для предприятий и финансовых учреждений. Для применения в быту вы можете либо сами сделать систему защиты по своему вкусу, либо заказать готовый комплект в китайских интернет-магазинах, естественно, без всяких гарантий качества. Важный плюс – сравнительно небольшие энергозатраты делают лазерную сигнализацию

Предлагаемая конструкция может пригодиться для охраны некапитальных проемов — окон, дверей проходов — или установлена по периметру открытого объекта. Принцип работы – срабатывание по прерыванию луча лазера нарушителем. Несмотря на свою простоту, система получилась достаточно надежной и экономичной, а красный лазер, работающий в режиме коротких импульсов практически незаметен нарушителю.

Рисунок 1. Схема передатчика лазерной охранной системы

Передатчик, схема которого изображена выше, состоит из генератора коротких импульсов и усилителя тока, нагруженного на лазерную указку, которую несложно найти практически в любом ларьке. Генератор собран на элементах DD1.1, DD1.2 и при указанных на схеме номиналах частотозадающей цепи работает на частоте около 5 Гц. Далее сигнал поступает на дифференцирующую цепь С2R3, которая формирует короткие импульсы длительностью около 10 мкс. Это не только делает устройство экономичным (одной шестивольтовой батареи типа 476 хватает более чем на год непрерывной работы передатчика), но и незаметным для нарушителя.

Далее импульсы выравниваются по форме и амплитуде элементами DD1.3, DD1.4 и поступают на усилитель, собранный на транзисторе VT1. Усилитель нагружен на лазерную указку, которую дорабатывают – исключают батареи и снимают конусообразный наконечник. Резистор R7, включенный последовательно с резистором, «впечатанным» в саму плату лазерного фонарика (его номинал порядка 50 Ом), является токоограничивающим для лазерного светодиода, тумблер SA1 включает непрерывный режим работы излучателя, необходимый для юстировки системы «передатчик-приемник».

Для большей экономии и стабильности частоты микросхема DD1 питается пониженным до 3-4 В напряжением, излишек гасится резистором R6. Средний ток потребления передатчиком не превышает 10 мкА, в импульсе светодиод потребляет около 20 мА, поэтому выключатель питания не предусмотрен. Передатчик сохраняет работоспособность (конечно, при снижении дальности) при снижении питающего напряжения до 4.5 В.

Приемник, схема которого изображена на рисунке 2, собран на интегральной микросхеме DA1, чувствительным элементом служит фотодиод ФД263-01. При его замене нужно учитывать длину импульсов засветки – время реакции светодиода на засветку должно быть в 5-10 раз ниже длительности импульса лазера.

На его месте смогут работать, к примеру, ФД320, ФД-11К, ФД-К-142, КОФ122 (А, Б) и многие другие. В ответ на каждую вспышку передатчика приемник формирует на выходе импульс высокого уровня амплитудой КМОП. Его можно использовать для дальнейшей обработки. Для исключения внешней засветки фотодиод нужно установить в непрозрачную трубку, выполняющую роль бленды.

Настройка системы сводится к ее юстировке. Делают это визуально, наводя луч лазера на фотоприемник как можно точнее. Для этого переключателем SA1 включают передатчик на непрерывное излучение. После окончания юстировки и приемник, и передатчик должны быть прочно закреплены. В принципе, «микронной» юстировки такая система не требует. Во время экспериментов она надежно работала, когда фотоприемник, отнесенный от передатчика на 50 м, находился в круге разброса излучения диаметром 30 см.

По материалам «Радио» №7, 2002 г.