Open Library - открытая библиотека учебной информации

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3 / 2 можно рассматривать как приближенное значение числа - 8 / 5 с точностью до 1 / 5 , поскольку

Если а" < а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3 / 2 есть приближенное значение числа - 8 / 5 c избытком, так как - 3 / 2 > - 8 / 5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Конец работы -

Эта тема принадлежит разделу:

Методическое пособие для выполнения практических работ по дисциплине математика часть 1

Методическое пособие для выполнения практических работ по дисциплине.. для профессий начального профессионального образования и специальностей среднего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Методическое пособие составлено в соответствии с рабочей программой по дисциплине «Математика», разработанной на основе Федерального государственного образовательного стандарта третьего поколения п

Пропорции. Проценты.
Цели урока: 1) Обобщить теоретические знания по теме «Проценты и пропорции». 2) Рассмотреть виды и алгоритмы решений задач на проценты, составление пропорций решить

Пропорция.
Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с,

ПРАКТИЧЕСКАЯ РАБОТА № 2
«Уравнения и неравенства» Цели урока: 1) Обобщить теоретические знания по теме: «Уравнения и неравенства». 2) Рассмотреть алгоритмы решений заданий теме «Ур

Уравнения, содержащие переменную под знаком модуля.
Модуль числа а определяется следующим образом: П р и м е р: Решить уравнение. Р е ш е н и е. Если, то и данное уравнение примет вид. Можно записать так:

Уравнения с переменной в знаменателе.
Рассмотрим уравнения вида. (1) Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

Рациональные уравнения.
Уравнение f(x) = g(x) называется рациональным, если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым;

Решение уравнений методом введения новой переменной.
Суть метода поясним на примере. П р и м е р: Решить уравнение. Р е ш е н и е. Положим, получим уравнение, откуда находим. Задача сводится к решению совокупности уравнений

Иррациональные уравнения.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод воз

Метод интервалов
Пример:Решить неравенство. Решение. ОДЗ: откуда имеем x [-1; 5) (5; +) Решим уравнение Числитель дроби равен 0 при x = -1, это и есть корень уравнения.

Упражнения для самостоятельной работы.
3х + (20 – х) = 35,2, (х – 3) - х = 7 – 5х. (х + 2) - 11(х + 2) = 12. х = х, 3у = 96, х + х + х + 1 = 0, – 5,5n(n – 1)(n + 2,5)(n -

ПРАКТИЧЕСКАЯ РАБОТА № 4
«Функции, их свойства и графики» Цели урока: 1) Обобщить теоретические знания по теме: «Функции, свойства и графики». 2) Рассмотреть алгори

Будет грубой ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Графики обратных тригонометрических функций
Построим график арксинуса Построим график арккосинуса Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основн

Математические портреты пословиц
Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека н


Построить графики функций а)у=х2 ,у=х2+1 ,у=(х-2)2 б)у=1/х, у=1/(x-2),y=1/x -2 на одной координатной плоскости. Построить графики функций c

Натуральные числа

Свойства сложения и умножения натуральных чисел
a + b = b + a - переместительное свойство сложения (a + b) + c = a + (b +c) - сочетательное свойство сложения ab = ba

Признаки делимости натуральных чисел
Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делитс

Шкалы и координаты
Длины отрезков измеряют линейкой. На линейке (рис. 19) нанесены штрихи. Они разбивают линейку на равные части. Эти части называют делениями. На рисунке 19 длина ка

Рациональные числа
Цели урока: 1) Обобщить теоретические знания по теме «Натуральные числа». 2) Рассмотреть виды и алгоритмы решений задач связанных с понятием натурального числа.

Десятичные дроби. Перевод десятичной дроби в обыкновенную дробь.
Десятичная дробь - это другая форма записи дроби со знаменателем Например, . Если в разложении знаменателя дроби на простые множители содержатся только 2 и 5, то эту дробь можно записать в виде дес

Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби, где - целое число, а - натуральное число. Возведём предполагаемое равенство в квадрат: . Отсюда

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.
ПОГРЕШНОСТИ Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется

Базовый уровень
Пример.Вычислить. Решение: . Ответ: 2,5. Пример. Вычислить. Решение: Ответ: 15.


Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип: явно указано то преобразование, которое необходимо выполнить. Например. 1

Задачи для самостоятельного решения
Отметьте номер правильного ответа: Результат упрощения выражения имеет вид 1. ; 4. ; 2. ; 5. . 3. ; Значение выражения равно 1) 4; 2) ; 3)

Задачи для самостоятельного решения
Найдите значение выражения 1. .2. . 2. . 3. . 4. . 5. .7. . 6.. при. 7.. при. 8.. при. 9. при. 1

Задачи для самостоятельного решения
Вопрос 1. Найдите логарифм 25 по основанию 5. Вопрос 2. Найдите логарифм по основанию 5. Вопрос 3.

ПРАКТИЧЕСКАЯ РАБОТА № 17
«Аксиомы стереометрии и следствия из них» Цель урока: 1) Обобщить теоретические знания

Сейчас, когда человек владеет мощным арсеналом компьютерной техники (различные калькуляторы, компьютеры и т.п.), соблюдение правил приближенных вычислений особенно важно, чтобы не исказить достоверность результата.

Выполняя любые вычисления, следует помнить о точности результата, которую можно или нужно (если устанавливают) получить. Так, недопустимо производить вычисления с большей точностью, чем это задано данным физической задачи или требуется условиями експерименту1. Например, выполняя математические действия с числовыми значениями физических величин, которые имеют две достоверные (значимые) цифры, нельзя записывать результат расчетов с точностью, что выходит за пределы двух достоверных цифр, даже если в итоге имеем их больше.

Значение физических величин надо записывать, отмечая лишь знаки достоверного результата. Например, если числовое значение величины 39 600 имеет три достоверных знаки (абсолютная погрешность результата равен 100), то результат надо записать в виде 3,96 104 или 0,396 105. В подсчете достоверных цифр не учитываются нули слева от числа.

Чтобы результат вычислений был корректным, его надо округлить, оставляя лишь истинное значение величины. Если числовое значение величины содержит лишние (недостоверные) цифры, которые преобладают заданную точность, то последняя цифра, хранящейся увеличивается на 1 при условии, что избыток (лишние цифры) равна или больше половины значения следующего разряда числа.

В разных числовых значениях нуль может быть как достоверной, так и недостоверной цифрой. Так, в примере б) он является недостоверной цифрой, а в г) - достоверной, значимой. В физике, если хотят подчеркнуть достоверность разряда числового значения физической величины, в стандартном ее выражении указывают «0». Например, запись значения массы 2,10 10-3 кг указывает на три достоверные цифры результата и соответствующую точность измерения, а значение 2,1 10-3 кг только две достоверные цифры.

Следует помнить, что результат действий с числовыми значениями физических величин является приближенным результатом, который учитывает точность расчета или погрешность измерений. Поэтому при приближенных вычислений следует руководствоваться следующими правилами подсчета достоверных цифр:

1. При выполнении арифметических действий с числовыми значениями физических величин в их результате следует брать столько достоверных знаков, сколько их имеет числовое значение с наименьшим количеством достоверных знаков.

2. Во всех промежуточных подсчетах следует сохранять на одну цифру больше, чем их имеет числовое значение с наименьшим количеством достоверных знаков. В конечном итоге эта «дополнительная» цифра отбрасывается путем округления.

3. Если отдельные данные имеют более достоверных знаков, чем другие, их значения предварительно следует округлить (можно сохранить одну «избыточную» цифру) и после этого выполнять действия.

Общие сведения

Часто точное число представляют ограниченным количеством цифр, отбрасывая «лишние» цифры, либо округляя его до определенного разряда. Такое число называют приближенным.

Истинная погрешность приближенного числа, т.е. разность между точным и приближенным числами, при отбрасывании цифр не превышает единицы разряда последней сохраненной цифры, а при отбрасывании с округлением, выполненному по установленным стандартом правилам, половины единицы цифры сохраняемого разряда.

Приближенное число характеризуют числом значащих цифр, к которым относят все цифры, кроме нулей слева.

Цифры в записи приближенного числа называются верными, если погрешность не превышает половины единицы последнего разряда.

К приближенным числам относятся также результаты измерения А, которыми оценивают действительные значения А д измеряемой величины. Так как истинная погрешность полученного результата неизвестна, то ее заменяют понятием предельной абсолютной погрешности Δ пр = | A - A д | или предельной относительной погрешности δ пр = Δ пр / А (чаще указывается в процентах δ пр = 100 Δ пр / А)

Предельная относительная погрешность приближенного числа может быть оценена по формуле:

где δ – число верных значащих цифр;

n 1 – первая слева значащая цифра.

Для определения необходимого числа верных знаков обеспечивающих заданную предельную относительную погрешность следует руководствоваться правилами:

    если первая значащая цифра не превышает трех, то число верных цифр должно быть на единицу больше, чем модуль показателя |-q| при 10 в заданной относительной погрешности δ пр = 10 -q

    если первая значащая цифра 4 и больше, то модуль показателя q равен числу верных цифр.

(Если δ пр = 10 - q , то S можно определить по формуле
)

Правила вычислений с приближенными числами

    Результат суммирования (вычитания) приближенных чисел будет иметь столько верных знаков, сколько их имеет слагаемое с наименьшим числом верных знаков.

    При умножении (делении) в полученном результате будет столько значащих верных цифр, сколько их в исходном числе с наименьшим количеством верных знаков.

    При возведении в степень (извлечении корня) любой степени результат имеет столько же верных знаков, сколько их в основании.

    Число и мантисса его логарифма содержит одинаковое количество верных знаков.

    Правило запасной цифры. Чтобы по возможности уменьшить ошибки округления, рекомендуется в тех исходных данных, которые это позволяют, а также и в результате, если он будет участвовать в дальнейших вычислениях, сохранить по одной лишней цифре сверх того, что определено правилами 1-4.

3. Класс точности и его использование для оценки инструментальной погрешности приборов

Класс точности – обобщенная характеристика, используемая для оценки предельных значений основной и дополнительной погрешностей.

Основной называют погрешность прибора, присущую ему в нормальных условиях эксплуатации.

Условия эксплуатации определяются значениями влияющих на показания приборов величин, не являющихся для данного прибора информативными. К влияющим величинам относят температуру среды, в которой выполняются измерения, положение шкалы прибора, частоту измеряемой величины (не для частотомеров), напряженность внешнего магнитного (или электрического) поля, напряжение питания электронных и цифровых приборов и др.

В технической документации прибора указывают нормальный и рабочий диапазоны значений влияющих величин. Использование прибора при значении влияющей величины вне пределов рабочего диапазона не допускается.

Класс точности прибора устанавливают по форме:

    предела абсолютной погрешности Δ пр = ± а или Δ пр = ± (а + b A);

    предела относительной погрешности δ пр = ± p или δ пр = ± ;

    предела приведенной погрешности γ пр = ± k

Числа a, b, p, c, d, k выбирают из ряда 1; 1,5; 2; 2,5; 4; 5; 6 10 n , где n = 1, 0, -1, -2 и т.д.

А – показания прибора;

А max – верхний предел используемого диапазона измерений прибора.

Приведенная погрешность

,

где А н – нормирующее значение, условно принятое для данного прибора, зависящее от формы шкалы.

Определение А н для наиболее часто встречающихся шкал приведены ниже:

а) односторонняя шкала б) шкала с нулем внутри

А н = А max A н = |A 1 | + A 2

в) шкала без нуля г) существенно неравномерная шкала (для омметров, фазометров)

А н = А 2 – А 1 А н = L

Правила и примеры обозначения классов точности приведены в таблице 3.1.

Таблица 3.1

Формула для предельной основной погрешности

Обозначение класса точности на приборе

общий вид

Δ = ± (а + b A)

± а, ед. величины А

± (а + b A), ед. величины А

Римскими или латинскими буквами

Cтраница 2


Математические действия над приближенными значениями величин называются приближенными, вычислениями. К настоящему времени создана целая наука о приближенных вычислениях, с рядом положений которой мы познакомимся в дальнейшем.  

Результат измерения всегда дает приближенное значение величины. Это связано с неточностью самих измерений, неидеальной точностью измерительных приборов.  

Что называется относительной погрешностью приближенного значения величины.  

В табл. 25 приведены приближенное значения величин / Си / - д при различных амплитудах Um0 для [ диода 6X6, нагруженного сопротивлением R 0 5 мгом. Эта таблица составлена проф.  

В математических таблицах обычно даются приближенные значения величин. При этом считают, что абсолютная погрешность не превосходит половины единицы последнего разряда.  

При этом возникает необходимость находить приближенные значения величин при условии, что граница относительной погрешности не должна превышать наперед заданного значения. На данном занятии будут рассмотрены задачи такого типа.  

Если в данном точном или приближенном значении величины число цифр больше, чем это необходимо по практическим соображениям, то это число округляют. Операция округления чисел состоит в отбрасывании нескольких цифр младших разрядов и замене их нулями; при этом последнюю удерживаемую цифру оставляют без изменения, если первая отбрасываемая цифра меньше 5; если она равна или больше 5, то цифру последнего удерживаемого разряда увеличивают на единицу.  

Условимся считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превышает половины единицы последнего разряда.  

При таком округлении число, характеризующее приближенное значение величины, состоит из верных цифр, а цифра низшего разряда этого числа (последняя в записи) имеет точность 1 того же разряда. Например, запись т 3 68 кг означает т 3 68 0 01 кг, а запись т3 680 кг означает т3 680 0 001 кг.  

Из уравнения видно, что сумма приближенных значений величин А и сумма их погрешностей являются приближенным значением сумм величин X и их абсолютной ошибкой.  

N) в (1) обозначено приближенное значение величины y (xi, x0, г / о), получаемое рассматриваемым методом.  

Расчеты, как правило, производятся с приближенными значениями величин - приближенными числами. Разумная оценка погрешности при вычислениях позволяет указать оптимальное количество знаков, которые следует сохранять при расчетах, а также в окончательном результате.  

В результате счета можно получить или точное или приближенное значение величины. При этом достаточным признаком приг ближенности результата счета является наличие разных ответов при повторных подсчетах.  

В действительности, средняя арифметическая X даст ему лишь приближенное значение величины а xf, и если сама схема его опыта была неудовлетворительна или приборы плохо проверены (например, измерительная линейка вместо 1 м равна 0 999 мм), то, как бы точно наш наблюдатель ни нашел значение а, у него нет оснований считать, что X или а соответствуют истинному значению скорости звука, которая может быть наблюдаема в других самых разнообразных опытах. Основное допущение, которое должно было бы оправдать применение способа средней арифметической к физическим измерениям такого рода, состоит в предположении, что неизвестная величина а xf или, другими словами, что измерение (или вычисление) производится без систематической ошибки.  

На практике, измеряя площади, мы чаще всего пользуемся приближенными значениями величин.  

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.