Открытие электромагнитной индукции кратко. План-конспект урока по физике (11 класс) на тему: Открытие электромагнитной индукции

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений .

Есть нечто символическое в том, что в год рождения М. Фарадея (1791 г.) был опубликован трактат Луиджи Гальвани с первым описанием нового физического явления - электрического тока, а в год его смерти (1867 г.) была изобретена «динамомашина» - самовозбуждающийся генератор постоянного тока, т.е. появился надежный, экономичный и удобный в эксплуатации источник электрической энергии. Жизнь великого ученого и его неповторимая по своим методам, содержанию и значению деятельность не только открыли новую главу физики, но и сыграли решающую роль в рождении новых отраслей техники: электротехники и радиотехники.

Вот уже более ста лет многие поколения учащейся молодежи на уроках физики и из многочисленных книг узнают историю замечательной жизни одного из самых знаменитых ученых, члена 68 научных обществ и академий. Обычно имя М. Фарадея связывают с самым значительным и потому наиболее известным открытием - явлением электромагнитной индукции, сделанным им в 1831 г. Но еще за год до этого, в 1830 г. за исследования в области химии и электромагнетизма М.Фарадей был избран почетным членом Петербургской Академии наук, членом же Лондонского Королевского общества (Британской академии наук) он был избран еще в 1824 г. Начиная с 1816 г., когда увидела свет первая научная работа М. Фарадея, посвященная химическому анализу тосканской извести, и по 1831 г., когда стал публиковаться знаменитый научный дневник «Экспериментальные исследования по электричеству», М. Фарадеем было опубликовано свыше 60 научных трудов.

Огромное трудолюбие, жажда знаний, прирожденный ум и наблюдательность позволили М. Фарадею достичь выдающихся результатов во всех тех областях научных исследований, к которым обращался ученый. Признанный «король экспериментаторов» любил повторять: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы».

Каждое исследование М. Фарадея отличалось такой обстоятельностью и настолько согласовывалось с предыдущими результатами, что среди современников почти не находилось критиков его работ.

Если исключить из рассмотрения химические исследования М. Фарадея, которые в своей области также составляли эпоху (достаточно вспомнить об опытах сжижения газов, об открытии бензола, бутилена), то все прочие его работы, на первый взгляд иногда разрозненные, как мазки на полотне художника, взятые вместе, образуют изумительную картину всестороннего исследования двух проблем: взаимопревращений различных форм энергии и физического содержания среды.

Рис. 2.11. Схема «электромагнитных вращений» (по рисунку Фарадея)

1, 2 - чаши с ртутью; 3 - подвижный магнит; 4 - неподвижный магнит; 5, 6 - провода, идущие к батарее гальванических элементов; 7 - медный стержень; 8 - неподвижный проводник; 9 - подвижный проводник

Работам М. Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Ампера, Био, Савара, проведенных в 1820 г., стало известно не только об электромагнетизме, но и о своеобразии взаимодействий тока и магнита: здесь, как уже отмечалось, действовали не привычные для классической механики центральные силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно проводнику. М. Фарадей поставил перед собой вопрос: не стремится ли магнит к непрерывному движению вокруг проводника стоком? Опыт подтвердил гипотезу. В 1821 г. М. Фарадей дал описание физического прибора, схематически представленного на рис. 2.11. В левом сосуде с ртутью находился стержневой постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде стержень магнита был неподвижен, а проводник с током, свободно подвешенный на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Поскольку в этом опыте впервые фигурирует магнитоэлектрическое устройство с непрерывным движением, то вполне правомерно начать именно с этого устройства историю электрических машин вообще и электродвигателя в частности. Обратим также внимание на ртутный контакт, нашедший впоследствии применение в электромеханике.

Именно с этого момента, судя по всему, у М. Фарадея начинают складываться представления о всеобщей «взаимопревращаемости сил». Получив при помощи электромагнетизма непрерывное механическое движение, он ставит перед собой задачу обратить явление или, по терминологии М. Фарадея, превратить магнетизм в электричество.

Только абсолютная убежденность в справедливости гипотезы о «взаимопревращаемости» может объяснить целеустремленность и настойчивость, тысячи опытов и 10 лет напряженного труда, затраченного на решение сформулированной задачи. В августе 1831 г. был сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была изложена сущность явления электромагнитной индукции.

Рис. 2.12. Иллюстрация опыта Араго («магнетизма вращения»)

1 - проводящий немагнитный диск; 2 - стеклянное основание для крепления оси диска

В качестве примера, характеризующего ход мыслей ученого и формирование его представлений об электромагнитном поле, рассмотрим исследование М. Фарадеем явления, получившего тогда название «магнетизма вращения». За много лет до работ М. Фарадея мореплаватели замечали тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В 1824 г. Д.Ф. Араго (см. § 2.5) описал явление «магнетизма вращения», удовлетворительно объяснить которое ни он, ни другие физики не могли. Сущность явления состояла в следующем (рис. 2.12). Подковообразный магнит мог вращаться вокруг вертикальной оси, а над его полюсами находился алюминиевый или медный диск, который также мог вращаться на оси, направление вращения которой совпадало с направлением вращения оси магнита. В состоянии покоя никаких взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить возможность увлечения диска потоками воздуха, магнит и диск были разделены стеклом.

Открытие электромагнитной индукции помогло М. Фарадею объяснить явление Д.Ф. Араго и уже в самом начале исследования записать: «Я надеялся сделать из опыта г-на Араго новый источник электричества».

Практически одновременно с М. Фарадеем электромагнитную индукцию наблюдал выдающийся американский физик Джозеф Генри (1797–1878 гг.). Нетрудно себе представить переживания ученого, будущего президента американской Национальной академии наук, когда он, собираясь опубликовать свои наблюдения, узнал о публикации М. Фарадея. Год спустя Д. Генри открыл явление самоиндукции и экстратоки, а также установил зависимость индуктивности цепи от свойств материала и конфигурации сердечников катушек. В 1838 г. Д. Генри изучал «токи высшего порядка», т.е. токи, индуцированные другими индуцированными токами. В 1842 г. продолжение этих исследований привело Д. Генри к открытию колебательного характера разряда конденсатора (позднее, в 1847 г., это открытие повторил выдающийся немецкий физик Герман Гельмгольц) (1821–1894 гг.).

Обратимся к главным опытам М. Фарадея. Первая серия опытов закончилась экспериментом, демонстрировавшим явление «вольта-электрической» (по терминологии М. Фарадея) индукции (рис. 2.13, а - г). Обнаружив возникновение тока во вторичной цепи 2 при замыкании или размыкании первичной 1 или при взаимном перемещении первичной и вторичной цепей (рис. 2.13, в), М. Фарадей поставил эксперимент для выяснения свойств индуцированного тока: внутрь спирали б, включенной во вторичную цепь, помещалась стальная игла 7 (рис. 2.13, б), которая намагничивалась индуцированным током. Результат говорил о том, что индуцированный ток подобен току, получаемому непосредственно от гальванической батареи 3.

Рис. 2.13. Схемы основных опытов, приведших к открытию электромагнитной индукции

Заменив деревянный или картонный барабан 4, на который наматывались первичная и вторичная обмотки, стальным кольцом (рис. 2.13, г), М. Фарадей обнаружил более интенсивное отклонение стрелки гальванометра 5. Данный опыт указывал на существенную роль среды в электромагнитных процессах. Здесь М. Фарадей впервые применяет устройство, которое можно назвать прототипом трансформатора.

Вторая серия опытов иллюстрировала явление электромагнитной индукции, возникавшее при отсутствии источника напряжения в первичной цепи. Исходя из того, что катушка, обтекаемая током, идентична магниту, М. Фарадей заменил источник напряжения двумя постоянными магнитами (рис. 2.13, д) и наблюдал ток во вторичной обмотке при замыкании и размыкании магнитной цепи. Это явление он назвал «магнитоэлектрической индукцией»; позднее им было отмечено, что никакой принципиальной разницы между «вольта-электрической» и «магнитоэлектрической» индукцией нет. Впоследствии оба эти явления были объединены термином «электромагнитная индукция». В заключительных экспериментах (рис. 2.13, е, ж) демонстрировалось появление индуцированного тока при движении постоянного магнита или катушки с током внутри соленоида. Именно этот опыт нагляднее других продемонстрировал возможность превращения «магнетизма в электричество» или, точнее выражаясь, механической энергии в электрическую.

На основе новых представлений М. Фарадей и дал объяснение физической стороны опыта с диском Д.Ф. Араго. Кратко ход его рассуждений можно изложить следующим образом. Алюминиевый (или любой другой проводящий, но немагнитный) диск можно представить себе в виде колеса с бесконечно большим числом спиц - радиальных проводников. При относительном движении магнита и диска эти спицы-проводники «перерезают магнитные кривые» (терминология Фарадея), и в проводниках возникает индуцированный ток. Взаимодействие же тока с магнитом было уже известно. В истолковании М. Фарадея обращает на себя внимание терминология и способ объяснения явления. Для определения направления индуктированного тока он вводит правило ножа, перерезающего силовые линии. Это еще не закон Э.Х. Ленца, для которого свойственна универсальность характеристики явления, а только попытки каждый раз путем подробных описаний установить, будет ли ток протекать от рукоятки к кончику лезвия или наоборот. Но здесь важна принципиальная картина: М. Фарадей в противовес сторонникам теории дальнодействия, заполняет пространство, в котором действуют различные силы, материальной средой, эфиром, развивая эфирную теорию Л. Эйлера, находящегося, в свою очередь, под влиянием идей М.В. Ломоносова.

М. Фарадей придавал магнитным, а затем при исследовании диэлектриков и электрическим силовым линиям физическую реальность, наделял их свойством упругости и находил очень правдоподобные объяснения самым различным электромагнитным явлениям, пользуясь представлением об этих упругих линиях, похожих на резиновые нити.

Прошло более полутора столетий, а мы до сих пор не нашли более наглядного способа и схемы объяснения явлений, связанных с индукцией и электромеханическими действиями, чем знаменитая концепция фарадеевских линий, которые и поныне нам представляются вещественно ощутимыми.

Из диска Д.Ф. Араго М. Фарадей действительно сделал новый источник электричества. Заставив вращаться алюминиевый или медный диск между полюсами магнита, М. Фарадей наложил на ось диска и на его периферию щетки.

Таким образом была сконструирована электрическая машина, получившая позднее наименование униполярного генератора.

При анализе работ М. Фарадея отчетливо проявляется генеральная идея, которая разрабатывалась великим ученым всю его творческую жизнь. Читая М. Фарадея, трудно отделаться от впечатления, что он занимался только одной проблемой взаимопревращений различных форм энергии, а все его открытия совершались между делом и служили лишь целям иллюстрации главной идеи. Он исследует различные виды электричества (животное, гальваническое, магнитное, термоэлектричество) и, доказывая их качественную тождественность, открывает закон электролиза. При этом электролиз, как и вздрагивание мышц препарированной лягушки, служил первоначально лишь доказательством того, что все виды электричеств проявляются в одинаковых действиях.

Исследования статического электричества и явления электростатической индукции привели М. Фарадея к формированию представлений о диэлектриках, к окончательному разрыву с теорией дальнодействия, к замечательным исследованиям разряда в газах (открытие фарадеева темного пространства). Дальнейшее исследование взаимодействия и взаимопревращения сил привели его к открытию магнитного вращения плоскости поляризации света, к открытию диамагнетизма и парамагнетизма. Убежденность во всеобщности взаимопревращений заставила М. Фарадея даже обратиться к исследованию связи между магнетизмом и электричеством, с одной стороны, и силой тяжести, с другой. Правда, остроумные опыты Фарадея не дали положительного результата, но это не поколебало его уверенности в наличии связи между этими явлениями.

Биографы М. Фарадея любят подчеркивать тот факт, что М. Фарадей избегал пользоваться математикой, что на многих сотнях страниц его «Экспериментальных исследований по электричеству» нет ни одной математической формулы. В связи с этим уместно привести высказывание соотечественника М. Фарадея великого физика Джеймса Кларка Максвелла (1831–1879 гг.): «Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков».

«Математичность» мышления Фарадея можно иллюстрировать его законами электролиза или, например, формулировкой закона электромагнитной индукции: количество приведенного в движение электричества прямо пропорционально числу пересеченных силовых линий. Достаточно представить себе последнюю формулировку в виде математических символов, и мы немедленно получаем формулу, из которой очень быстро следует знаменитое d?/dt, где? - магнитное потокосцепление.

Д.К. Максвелл, родившийся в год открытия явления электромагнитной индукции, очень скромно оценивал свои заслуги перед наукой, подчеркивая, что он лишь развил и облек в математическую форму идеи М. Фарадея. Максвеллову теорию электромагнитного поля по достоинству оценили ученые конца XIX и начала XX в., когда на почве идей Фарадея - Максвелла начала развиваться радиотехника.

Для характеристики прозорливости М. Фарадея, его умения проникать в глубь сложнейших физических явлений важно напомнить здесь, что еще в 1832 г. гениальный ученый рискнул предположить, что электромагнитные процессы носят волновой характер, причем магнитные колебания и электрическая индукция распространяются с конечной скоростью.

В конце 1938 г. в архивах Лондонского Королевского общества было обнаружено запечатанное письмо М. Фарадея, датированное 12 марта 1832 г. Оно пролежало в безвестности более 100 лет, а в нем были такие строки:

«Некоторые результаты исследований… привели меня к заключению, что на распространение магнитного воздействия требуется время, т.е. при воздействии одного магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным.

Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха, т.е. я намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку, и является наиболее вероятным объяснением световых явлений.

По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции. Эти воззрения я хочу проверить экспериментально, но так как мое время занято исполнением служебных обязанностей, что может вызвать продление опытов … я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие за собой определенной датой…» .

Поскольку эти идеи М. Фарадея оставались неизвестными, нет никаких оснований отказывать великому его соотечественнику Д.К. Максвеллу в открытии этих же идей, которым он придал строгую физико-математическую форму и фундаментальное значение.

Из книги Удивительная механика автора Гулиа Нурбей Владимирович

Открытие древнего гончара Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.В небольшой гончарной мастерской, с виду

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Обеспечение электромагнитной совместимости устройств связи и телемеханики Вопрос. Как выполняются устройства связи и телемеханики?Ответ. Выполняются помехозащищенными со степенью, достаточной для обеспечения их надежной работы как в нормальных, так и аварийных

Из книги Секретные автомобили Советской Армии автора Кочнев Евгений Дмитриевич

Семейство «Открытие» (КрАЗ-6315/6316) (1982 – 1991 гг.) В феврале 1976 года вышло секретное Постановление Совмина и ЦК КПСС о разработке на основных советских автозаводах семейств принципиально новых тяжелых армейских грузовиков и автопоездов, выполненных по требованиям

Из книги Шелест гранаты автора Прищепенко Александр Борисович

5.19. За что любят постоянные магниты. Самодельный прибор для измерения индукции поля. Другой прибор, избавляющий от мучений с расчетом обмотки Огромным преимуществом магнитов было то, что постоянное во времени поле не нуждалось в синхронизации со взрывными процессами и

Из книги Новые источники энергии автора Фролов Александр Владимирович

Глава 17 Капиллярные явления Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же

Из книги Металл Века автора Николаев Григорий Ильич

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА ХОББИ СВЯЩЕННИКА Семь металлов древности, а также сера и углерод - вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он

Из книги История электротехники автора Коллектив авторов

1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого

Из книги автора

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов .В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь

Из книги автора

3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и

Из книги автора

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации Открытие действия «электрического конфликта» на магнитную стрелкуВ июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра


В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.
Открытие Фарадея
Не случайно первый и самый важный шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Вскоре после открытия Эрстеда он писал: «...представляется весьма необычным, чтобы, с одной стороны, всякий электрический ток сопровождался магнитным действием соответствующей интенсивности, направленным под прямым углом к току, и чтобы в то же время в хороших проводниках электричества, помещенных в сферу этого действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех привели Фарадея к открытию, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока . (Источники, работающие на других принципах: гальва-нические элементы, аккумуляторы, термо- и фотоэлементы - дают ничтожную долю вырабатываемой электрической энер-гии.)
Долгое время взаимосвязь электрических и магнитных явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.
Открытие электромагнитной индукции , как назвал Фарадей это явление, было сделано 29 августа" 1831 г. Редкий случай, когда столь точно известна дата нового замечательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.
«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп-чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмо- Рис. 5.1
тря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».
Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение одного месяца Фарадей опытным путем открыл все существен- ные особенности явления электромагнитной индукции. Оста-валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.
Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони-зывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5.3).
Фарадей не только открыл явление, но и первым сконструировал несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил откло-
В
\

\
\
\
\
\
\
\L

S нение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.
В проводящем замкнутом контуре возникает электрический ток, если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Это явление называется электромагнитной индукцией.

Примером может служить вопрос. В этом контексте мы можем говорить о табу. Есть определенные области, которые будут табу для большинства, что не означает, что не будет ни одного, третьего, третьего ученого, который справится с этим явлением с любопытством человека.

Эти социальные условия делают большинство людей неинтересными в этом. Р: И это только вопрос. Пример примерки также показывает страх не дискредитировать. Д-р Марек Спира: Сегодня мы стремимся свергнуть все табу. С одной стороны, это знание истины, а с другой - уважение к определенным ценностям, чье свержение только ведет к разрушению общественного порядка. Любопытство человека настолько велико, что оно превосходит все границы. По своей природе человеку не нравится табу. И в этом смысле стремление к истине не знает границ, которые существуют, конечно, но они постоянно движутся.

Новый период в развитии физической науки начинается с гениального открытия Фарадеем электромагнитной индукции. Именно в этом открытии ярко проявилась способность науки обогащать технику новыми идеями. Уже сам Фарадей предвидел на основе своего открытия существование электромагнитных волн . 12 марта 1832 г. он запечатал конверт с надписью "Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества". Этот конверт был вскрыт в 1938 г. Оказалось, что Фарадей вполне ясно представлял, что индукционные действия распространяются с конечной скоростью волновым способом. "Я считаю возможным применить теорию колебаний к распространению электрической индукции",- писал Фарадей. При этом он указывал, что "на распространение магнитного воздействия требуется время, т. е. при воздействии магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебание взволнованной водной поверхности или же на звуковые колебания частиц воздуха".

Здесь возникает вопрос, узнаем ли мы когда-нибудь полную правду. Зная человеческую природу можно сказать, что, хотя это невозможно, мы всегда будем стремиться к этому. Однако есть опасность, что мы будем игнорировать эту тайну. Находясь на определенном этапе знания, мы можем заключить, что мы уже все знаем. Между тем, идет катастрофа, и вопрос в том, как мы можем ее отпустить? Возможно, это было из-за пренебрежения силами природы, силами природы. Примером может быть изобретатель компьютера, который в прошлом столетии считал, что приобретение знаний в компьютере будет неограниченным.

Фарадей понимал всю важность своей идеи и, не имея возможности проверить ее экспериментально, решил с помощью этого конверта "закрепить открытие за собой и, таким образом, иметь право, в случае экспериментального подтверждения, объявить эту дату датой своего открытия". Итак, 12 марта 1832 г. человечество впервые пришло к идее существования электромагнитных волн. С этой даты начинается история открытия радио.

Спустя годы после этого открытия, имея сегодня ноутбуки, это было заблуждением. Насколько масштабы нашего невежества увеличились по мере увеличения количества вопросов. Мы, физики, уклоняемся от земли. Предположим, мы хотим лететь в галактику далеко от Земли на несколько световых лет. Поскольку мы не можем построить космический корабль, который движется со скоростью выше скорости света, для достижения этой галактики недостаточно одного поколения космонавтов. Хотя можно представить себе космическое путешествие многих поколений космонавтов, но это возможно только в научной фантастике.

Но открытие Фарадея имело важное значение не только в истории техники. Оно оказало огромное влияние и на развитие научного миропонимания. С этого открытия в физику входит новый объект - физическое поле. Таким образом, открытие Фарадея принадлежит к тем фундаментальным научным открытиям, которые оставляют заметный след во всей истории человеческой культуры.

Именно эти константы, известные нам сегодня, определяют пределы познания. Если мы рассмотрим Большой взрыв, мы должны помнить, что наши знания до сих пор не доходят до того, что плотность материи несравнима с той, с которой мы имеем дело сегодня и которую мы не можем воспроизвести в наших условиях.

Мы не знаем эту «взрывную» физику, поэтому мы не знаем этих физических констант, если бы они были. Н.: Мы также не уверены, что сегодняшняя физика является конечной. У нас был Ньютон, который позже был проверен Эйнштейном, поэтому мы можем заключить, что Эйнштейн будет проверен кем-то другим.

Сын лондонского кузнеца переплетчик родился в Лондоне 22 сентября 1791 г. Гениальный самоучка не имел возможности даже закончить начальную школу и проложил путь в науку сам. Во время учения переплетному делу он читал книги, в особенности по химии, сам проделывал химические опыты. Слушая публичные лекции знаменитого химика Дэви, он окончательно убедился в том, что его призвание - наука, и обратился к нему с просьбой принять на работу в Королевский институт. С 1813 г., когда Фарадей был принят в институт лаборантом, и до самой смерти (25 августа 1867 г.) он жил наукой. Уже в 1821 г., когда Фарадей получил электромагнитное вращение, он поставил своей целью "превратить магнетизм в электричество". Десять лет поисков и напряженного труда увенчались открытием 29 августа 1871 г. электромагнитной индукции.

На этой основе была создана специальная теория относительности, уже неоднократно подтвержденная экспериментально. Однако, если одна из этих парадигм терпит неудачу, у нас будет новая физика. Если мы говорим, что мы знаем вселенную, природу, что мы знаем, что это было раньше, мы говорим это, потому что указанные физические константы не меняют своих значений с течением времени. Эксперименты, которые пытаются подорвать эти твердые вещества - и как и как они проводятся - не убедительны.

На самом деле мы можем сказать, что из определенной точки мы знаем, что физические законы, регулирующие Вселенную, уже не изменились - эти константы все те же. Есть ли секреты, с которыми мы не хотим встречаться? Кант говорил о двух типах метафизики - метафизике как о науке, которая не существует, а метафизике, как о естественной тенденции, которая заставляет нас нарушать табу.

"Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были изолированы в виде спирали между витками первой обмотки, причем металлический контакт был устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинами. При замыкании контакта наблюдалось временное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей". Так описал Фарадей свои первый опыт по индукции токов. Он назвал этот вид индукции вольта-электрической индукцией. Далее он описывает свой основной опыт с железным кольцом - прототипом современного трансформатора.

Границы существуют, но человеческий разум имеет естественную потребность задавать вопросы, на которые нельзя ответить эмпирически. Это не роскошь, а обязанность человека найти ее. Когда-то было убеждение, что слишком много любознательности оставляет нас от Бога. Мы сами создали табу - Бог не может быть известен, потому что мы потеряем веру. Аутентичные люди, которых уважают, прежде всего, доверяют, и их смирение было обусловлено культурным контекстом. Образованный человек начал уходить от Бога, утверждая, что он не поверит в это «суеверие».

Было много недоразумений, потому что иногда мы не ценили поиск истины. Христианство никогда официально не декларировало такую ​​формулу, потому что вера нуждается в помощи разума, чтобы знать истину и даже спорить с Господом Богом. Можем ли мы действительно познакомиться с ним? Это еще одна проблема, но она не освобождает нас от обязанности постоянного поиска, потому что у нас есть причина. Церковь сегодня повторяет, что между верой и разумом нет противоречия. Даже если он победит некоторые догмы?

"Из круглого брускового мягкого железа было сварено кольцо; толщина металла была равна семи восьмым дюйма, а наружный диаметр кольца - шести дюймам. На одну часть этого кольца были намотаны три спирали содержащие каждая около двадцати четырех футов медной проволоки, толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга..., занимая приблизительно девять дюймов по длине кольца Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А. На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, которая образовывала спираль В, имевшую одинаковое направление со спиралями А, но отделенную от них на каждом конце на протяжении приблизительно полудюйма голым железом.

С.: Нам не нужно бояться, разум не может отменить любую догму, и если это произойдет, это означает, что нам не нужно иметь дело с догмой, но с человеческой формулой без покрытия. Причина состоит в том, чтобы уничтожить ложь, но истина никогда не терпит неудачу. Мы знаем это из истории Церкви, даже если это было очень сложно, Церковь смогла очистить себя от лжи, и мы этим гордимся.

Иллюстрацией может служить пример взаимоотношений экипажа двух космических кораблей, после возвращения экипажа одного из них было сказано: Бога нет, а другого - настолько прекрасного, что он может быть создан только Богом. Так что, если есть табу вообще, то это временное существо из-за культурных и социальных условий, которое в основном связано с опасениями иметь дело с чем-то рискованным с точки зрения потери научной позиции. Это волшебное слово - организация - имеет свое происхождение, остается вопрос - что?

Спираль В соединялась медными проводами с гальванометром, помещенном на расстоянии трех футов от железа. Отдельные спирали соединялись концы с концами так, что образовывали общую спираль, концы которой соединялись с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, и притом значительно сильнее чем это наблюдалось, как описано выше, при пользовании в десять раз более мощной спиралью, но без железа; однако, несмотря на сохранение контакта, действие прекращалось. При размыкании контакта с батареей стрелка снова сильно отклонялась, но в направлении, противоположном тому, которое индуцировалось в первом случае".

Поэтому Бог знает вещи такими, какие они есть, и мы такие, какие они есть. Р.: Вы можете не согласиться со мной, но что-то, что невозможно проверить экспериментально, будет всегда труднее принять. Особенно в области физики. Н.: Тот же Кант говорит: у меня ограниченные знания, чтобы освободить место для веры. Там, где есть границы знания, начинается моя вера.

Н.: Причины для этого ученого заключаются в следующем: все доказательства существования Бога были ложными, так что Бога нет. Тем временем только методология проверяется следующим образом: все доказательства существования Бога были ложными, но никаких заключений о его существовании или его существовании не может быть сделано. И это действительно выходит за рамки компетенции, но здесь также есть огромная проблема - правильная методология исследования: правильная или неправильная, это касается каждой области, будь то физика, астрономия, философия или теология.

Фарадей исследовал далее непосредственным опытом влияние железа, внося внутрь полой катушки железный стержень, в этом случае "индуцированный ток оказывал на гальванометр очень сильное действие". "Подобное действие было затем получено при помощи обыкновенных магнитов ". Фарадей назвал это действие магнитоэлектрической индукцией, полагая, что природа вольта-электрической и магнитоэлектрической индукции одинакова.

Почему он используется для обнаружения секретов - естественной необходимости углублять знания, прогресс или удовлетворять субъективные потребности отдельных исследователей? Это можно увидеть на примере неингибированных так называемых. основные исследования. Их природа заключается в том, чтобы открыть секреты природы, независимо от часто используемого стимула для их непосредственного использования. Когда Фарадей обнаружил явление электромагнитной индукции, его спросили, каково это было бы иметь человечество?

Он уклончиво сказал, что вы наверняка заплатите налоги и не обратитесь к научной стороне открытия. Его субъективная потребность заключалась в желании узнать и удовлетворении, которое пришло от него. Мне кажется, что использование полезности исследования не оправдано.

Все описанные опыты составляют содержание первого и второго разделов классического труда Фарадея "Экспериментальные исследования по электричеству", начатого 24 ноября 1831 г. В третьем разделе этой серии "О новом электрическом состоянии материи" Фарадей впервые пытается описать новые свойства тел, проявляемые в электромагнитной индукции. Он называет это обнаруженное им свойство "электротоническим состоянием". Это первый зародыш идеи поля, сформировавшейся позднее у Фарадея и впервые точно сформулированной Максвеллом. Четвертый раздел первой серии посвящен объяснению явления Араго. Фарадей правильно причисляет это явление к индукционным и пытается с помощью этого явления "получить новый источник электричества". При движении медного диска между полюсами магнита он получил ток в гальванометре при помощи скользящих контактов. Это была первая динамомашина. Фарадей резюмирует результаты своих опытов следующими словами: "Этим было показано, таким образом, что можно создать постоянный ток электричества при помощи обыкновенного магнита". Из своих опытов по индукции в движущихся проводниках Фарадей вывел зависимость между полюсностью магнита, движущимся проводником и направлением индуцированного тока, т. е. "закон, управляющий получением электричества посредством магнитоэлектрической индукции". В результате своих исследований Фарадей установил, что "способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей или силовой оси точно так, как расположенный по окружности магнетизм возникает вокруг электрического тока и им обнаруживается" * .

Пусть университет в фундаментальных исследованиях продолжит задавать вопросы о том, почему и открывать новые законы или правила, а колледжи технического использования должны использовать их, чтобы сделать жизнь проще, удобнее, интереснее, привлекательно и т.д. неправильная передача этого подразделения не принесет никакой пользы. С.: Поиск истины бескорыстен. Ребенок поднимает тысячи вопросов, и родители отвечают на них. Когда Колумб отправился в путешествие по всему миру, его спросили, почему он едет туда.

Ибо весь мир был сотворен. Но ему нужно было знать, текла для себя. Он убивает нас утверждением, что все должно быть полезно. Ибо в этом случае истина трактуется инструментально, зная, что тайна также играет важную роль. Вопрос о смысле человеческой жизни становится в нашей культуре совершенно бесполезным. Но, с другой стороны, если бы мы не задавали этот вопрос, наша жизнь была бы бессмысленной. Во-первых, есть самоотверженность, и тогда может оказаться, что истина по-разному используется во благо личной, социальной, экономической, политической жизни.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 57. )

Другими словами, вокруг переменного магнитного потока возникает вихревое электрическое поле, подобно тому как вокруг электрического тока возникает вихревое магнитное поле. Этот фундаментальный факт был обобщен Максвеллом в виде его двух уравнений электромагнитного поля .

Для каждого открытия вам нужно быть хорошо подготовленным. Каждое открытие, даже так называемая медиальная катастрофа, покрывается огромными знаниями и опытом исследователя. Только огромные знания, воображение и выход за рамки традиционных рамок научных исследований позволяют увидеть нечто новое, новое, неизвестное, а затем называемое открытием. Коперника осудили не потому, что он ему не нравился, например, он был из Торунь, а потому, что он не мог понять, что Библию нельзя читать буквально. Часто исследователь сталкивается с вульгарным подходом к обучению, знаниям и непониманию.

Изучению явлений электромагнитной индукции, в особенности индукционного действия магнитного поля Земли, посвящена также вторая серия "Исследований", начатая 12 января 1832 г. Третью серию, начатую 10 января 1833 г., Фарадей посвящает доказательству тождества различных видов электричества: электростатического, гальванического, животного, магнитоэлектрического (т. е. получаемого посредством электромагнитной индукции). Фарадей приходит к выводу, что электричество, получаемое различными способами, качественно одинаково, разница в действиях только количественная. Этим был нанесен последний удар концепции различных "флюидов" смоляного и стеклянного электричества, гальванизма, животного электричества. Электричество оказалось единой, но полярной сущностью.

Иногда первооткрыватель опережает свое время, только новое поколение принимает его открытие. У нас также сегодня есть естественная тенденция комфортно укладывать мир в разные стороны, так что нам не нужно думать, просто чтобы потреблять. Примером может служить Джеймс Клерк Максвелл, чье знаменитое уравнение - наша цивилизация; Без них было бы трудно представить сегодняшние успехи и развитие. Однако понимание Максвелла механизма электромагнитного распространения не вписывается в сегодняшнюю интерпретацию этого явления.

Кроме того, Оливье Хевисайде, еще один ученый и математик, сделал его математические и математические формулы очень полезными. Это пример сущности и рода преемственности науки: вклад в универсальное знание имеет много ученых, даже «самых маленьких». Разве это не утешительно в эпоху очередного унижения академического мира? Каковы секреты современной науки , с которыми сталкиваются самые большие исследовательские возможности?

Весьма важна пятая серия "Исследований" Фарадея, начатая 18 июня 1833 г. Здесь Фарадей начинает свои исследования электролиза, приведшие его к установлению знаменитых законов, носящих его имя. Исследования эти были продолжены в седьмой серии, начатой 9 января 1834 г. В этой последней серии Фарадей предлагает новую терминологию: полюса, подводящие ток в электролит, он предлагает называть электродами, положительный электрод называть анодом, а отрицательный - катодом, частицы отлагаемого вещества, идущие к аноду он называет анионами, а частицы, идущие к катоду,- катионами . Далее, ему принадлежат термины электролит для разлагаемых веществ, ионы и электрохимические эквиваленты. Все эти термины прочно удержались в науке. Фарадей делает правильный вывод из найденных им законов, что можно говорить о каком-то абсолютном количестве электричества, связанном с атомами обычной материи. "Хотя мы ничего не знаем о том, что такое атом,- пишет Фарадей,- но мы невольно представляем себе какую-то малую частичку, которая является нашему уму, когда мы о ней думаем; правда, в таком же или в еще большем неведении мы находимся относительно электричества, мы даже не в состоянии сказать, представляет ли оно собою особую материю или материи, или же просто движение обыкновенного вещества, или еще вид какой-то силы или агента; тем не менее имеется огромное количество фактов, заставляющих нас думать, что атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, а в том числе своим химическим сродством друг к другу" * .

Ученые все еще задаются вопросом, почему заряд протона положителен, а электрон отрицателен? Какие свойства имеет антиматерия? Как ведет себя материал, известный при очень высоких температурах? Эти вопросы действительно имеют значение. Мы говорим о температурах, сравнимых с внутренней температурой Солнца. Это огромная проблема для физиков, очень важная в контексте поиска новых источников энергии.

Чтобы проиллюстрировать важность этой проблемы для человечества, достаточно привести одну из оценок. В ситуации такого большого прогресса науки, использования природы в служении человечеству проблема остается человеком, который все больше и больше путается. Изменения начинают размываться. Неизведанное развитие науки не оказывает отрицательного влияния на интеллектуальное развитие обществ, но наоборот - негативные явления, такие как вторичная неграмотность, размножаются.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 335. )

Таким образом, Фарадей отчетливо высказал идею "электрификации" материи, атомного строения электричества, причем атом электричества, или, как выражается Фарадей, "абсолютное количество электричества", оказывается "столь же определенным по своему действию, как любое из тех количеств, которые, оставаясь связанными с частицами материи, сообщают им их химическое сродство". Элементарный электрический заряд, как показало дальнейшее развитие физики, действительно может быть определен из законов Фарадея.

Весьма важное значение имела девятая серия "Исследований" Фарадея. В этой серии, начатой 18 декабря 1834 г., шла речь о явлениях самоиндукции, об экстратоках замыкания и размыкания. Фарадей указывает при описании этих явлений, что хотя им присущи черты инерции, однако от механической инерции явление самоиндукции отличает тот факт, что они зависят от формы проводника. Фарадей отмечает, что "экстраток тождествен с... индуцированным током" * . В результате у Фарадея сложилось представление о весьма широком значении процесса индукции. В одиннадцатой серии своих исследований, начатой 30 ноября 1837 г., он утверждает: "Индукция играет самую общую роль во всех электрических явлениях, участвуя, по-видимому, в каждом из них, и носит в действительности черты первейшего и существенного начала" ** . В частности, по мнению Фарадея, всякий процесс зарядки есть процесс индукции, смещения противоположных зарядов: "вещества не могут быть заряжены абсолютно, а только относительно, по закону, тождественному с индукцией. Всякий заряд поддерживается индукцией. Все явления напряжения включают начало индукций" *** . Смысл этих утверждений Фарадея тот, что всякое электрическое поле ("явление напряжения" - по терминологии Фарадея) обязательно сопровождается индукционным процессом в среде ("смещением" - по позднейшей терминологии Максвелла). Этот процесс определяется свойствами среды, ее "индуктивной способностью", по терминологии Фарадея, или "диэлектрической проницаемостью", по современной терминологии. Фарадей опытом со сферическим конденсатором определил диэлектрическую проницаемость ряда веществ по отношению к воздуху. Эти эксперименты укрепили Фарадея в мысли о существенной роли среды в электромагнитных процессах.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 445. )

** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 478. )

*** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 487. )

Закон электромагнитной индукции был существенно развит русским физиком Петербургской Академии Эмилием Христиановичем Ленцем (1804-1865). 29 ноября 1833 г. Ленц доложил Академии наук свое исследование "Об определении направления гальванических токов, возбуждаемых электродинамической индукцией". Ленц показал, что магнитоэлектрическая индукция Фарадея теснейшим образом связана с электромагнитными силами Ампера. "Положение, посредством которого магнитоэлектрическое явление сводится к электромагнитному, заключается в следующем: если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении" * .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 148-149. )

Этот принцип Ленца раскрывает энергетику индукционных процессов и сыграл важную роль в работах Гельмгольца по установлению закона сохранения энергии. Сам Ленц из своего правила вывел хорошо известный в электротехнике принцип обратимости электромагнитных машин: если вращать катушку между полюсами магнита, она генерирует ток; наоборот, если в нее послать ток, она будет вращаться. Электродвигатель можно обратить в генератор и наоборот. Изучая действие магнитоэлектрических машин, Ленц открывает в 1847 г. реакцию якоря.

В 1842-1843 гг. Ленц произвел классическое исследование "О законах выделения тепла гальваническим током" (доложено 2 декабря 1842 г., опубликовано в 1843 г.), начатое им задолго до аналогичных опытов Джоуля (сообщение Джоуля появилось в октябре 1841 г.) и продолженное им несмотря на публикацию Джоуля, "так как опыты последнего могут встретить некоторые обоснованные возражения, как это было уже показано нашим коллегой г-ном акад. Гессом" * . Ленц измеряет величину тока с помощью тангенс-буссоли - прибора, изобретенного гельсингфорским профессором Иоганном Нервандером (1805-1848), и в первой части своего сообщения исследует этот прибор. Во второй части "Выделение тепла в проволоках", доложенной 11 августа 1843 г., он приходит к своему знаменитому закону:

    "
  1. Нагревание проволоки гальваническим током пропорционально сопротивлению проволоки.
  2. Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока" ** .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 361. )

** (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 441. )

Закон Джоуля - Ленца сыграл важную роль в установлении закона сохранения энергии. Все развитие науки об электрических и магнитных явлениях подводило к идее единства сил природы, к идее сохранения этих "сил".

Почти одновременно с Фарадеем электромагнитную индукцию наблюдал американский физик Джозеф Генри (1797-1878). Генри изготовил большой электромагнит (1828), который, питаясь от гальванического элемента с малым сопротивлением, поддерживал груз в 2000 фунтов. Об этом электромагните упоминает Фарадей и указывает, что с его помощью можно при размыкании получить сильную искру.

Генри впервые (1832) наблюдал явление самоиндукции, и его приоритет отмечен наименованием единицы самоиндукции "генри".

В 1842 г. Генри установил колебательный характер разряда лейденской банки. Тонкая стеклянная игла, с помощью которой он исследовал это явление, намагничивалась с различной полярностью, тогда как направление разряда оставалось неизменным. "Разряд, какова бы ни была его природа,- заключает Генри,- не представляется (пользуясь теорией Франклина.- П. К.) единичным переносом невесомого флюида с одной обкладки на другую; обнаруженное явление заставляет нас допустить существование главного разряда в одном направлении, а затем несколько странных действий назад и вперед, каждое из которых является более слабым, чем предыдущее, продолжающееся до тех пор, пока не наступит равновесие".

Индукционные явления становятся ведущей темой в физических исследованиях. В 1845 г. немецкий физик Франц Нейман (1798-1895) дал математическое выражение закона индукции , обобщив исследования Фарадея и Ленца.

Электродвижущая сила индукции выражалась у Неймана в виде производной по времени от некоторой функции, индуцирующей ток, и взаимной конфигурации взаимодействующих токов. Эту функцию Нейман назвал электродинамическим потенциалом. Он нашел также выражение для коэффициента взаимной индукции. В своем сочинении "О сохранении силы" в 1847 г. Гельмгольц выводит неймановское выражение для закона электромагнитной индукции из энергетических соображений. В этом же сочинении Гельмгольц утверждает, что разряд конденсатора представляет собой "не... простое движение электричества в одном направлении, но... течение его то в одну, то в другую сторону между двух обкладок в виде колебаний, которые делаются все меньше и меньше, пока, наконец, вся живая сила не будет уничтожена суммою сопротивлений".

В 1853 г. Уильям Томсон (1824-1907) дал математическую теорию колебательного разряда конденсатора и установил зависимость периода колебаний от параметров колебательного контура (формула Томсона).

В 1858 г. П. Блазерна (1836-1918) снял экспериментально резонансную кривую электрических колебаний, изучая действие индуцирующего разрядкой контура, содержащего батарею конденсаторов и замыкающий проводники на побочный контур, с переменной длиной индуцируемого проводника. В том же 1858 г. Вильгельм Феддерсен (1832-1918) наблюдал искровой разряд лейденской банки во вращающемся зеркале, а в 1862 г. он сфотографировал изображение искрового разряда во вращающемся зеркале. Тем самым колебательный характер разряда был установлен с полной очевидностью. Вместе с тем экспериментально была проверена формула Томсона. Так шаг за шагом создавалось учение об электрических колебаниях , составляющее научный фундамент электротехники переменных токов и радиотехники.

ФАРАДЕЙ. ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.

Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.

Если с помощью электричества Ампер получал магниты, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставили перед собой Араго и Ампер в Париже, Колладон - в Женеве.

Фарадей ставит множество опытов, ведет педантичные записи. Каждому небольшому исследованию он посвящает параграф в лабораторных записях (изданы в Лондоне полностью в 1931 году под названием «Дневник Фарадея»). О работоспособности Фарадея говорит хотя бы тот факт, что последний параграф «Дневника» помечен номером 16041. Блестящее мастерство Фарадея-экспериментатора, одержимость, четкая философская позиция не могли не быте вознаграждены, но ожидать результата пришлось долгих одиннадцать лет.

Кроме интуитивной убежденности во всеобщей связи явлений, его, собственно, в поисках «электричества из магнетизма» ничто не поддерживало. К тому же он, как его учитель Дэви, больше полагался на свои опыты, чем на мысленные построения. Дэви учил его:

Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.

И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение - он приобретал способность к глубочайшим обобщениям.

Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.

Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки - все было в порядке.

Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо - во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!

Фарадей был в недоумении: во-первых, почему стрелка ведет себя так странно? Во-вторых, имеют ли отношение замеченные им всплески к явлению, которое он искал?

Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера - связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?

На следующий день, 30 августа, - новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.

Фарадей чувствует, что открытие где-то рядом.

«Я теперь опять занимаюсь электромагнетизмом и думаю, что напал на удачную вещь, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы».

К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.

Следующий эксперимент - 1 октября. Фарадей решает вернуться к самому началу - к двум обмоткам: одной с током, другой - подсоединенной к гальванометру. Различие с первым экспериментом - отсутствие стального кольца - сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.

Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.

Фарадей заранее знает, как это будет. Опыт удается блестяще.

«Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».

Секрет - в движении магнита! Импульс электричества определяется не положением магнита, а движением!

Это значит, что «электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Эта идея необыкновенно плодотворна. Если движение магнита относительно проводника создает электричество, то, видимо, и движение проводника относительно магнита должно рождать электричество! Причем эта «электрическая волна» не исчезнет до тех пор, пока будет продолжаться взаимное перемещение проводника и магнита. Значит, есть возможность создать генератор электрического тока, действующий сколь угодно долго, лишь бы продолжалось взаимное движение проволоки и магнита!

28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой - на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека.

После «электромагнитной эпопеи» Фарадей был вынужден прекратить на несколько лет свою научную работу - настолько была истощена его нервная система...

Опыты, аналогичные фарадеевским, как уже говорилось, проводились во Франции и в Швейцарии. Профессор Женевской академии Колладон был искушенным экспериментатором (он, например, произвел на Женевском озере точные измерения скорости звука в воде). Может быть, опасаясь сотрясения приборов, он, как и Фарадей, по возможности удалил гальванометр от остальной установки. Многие утверждали, что Колладон наблюдал те же мимолетные движения стрелки, что и Фарадей, но, ожидая более стабильного, продолжительного эффекта, не придал этим «случайным» всплескам должного значения...

Действительно, мнение большинства ученых того времени сводилось к тому, что обратный эффект «создания электричества из магнетизма» должен, по-видимому, иметь столь же стационарный характер, как и «прямой» эффект - «образование магнетизма» за счет электрического тока. Неожиданная «мимолетность» этого эффекта сбила с толку многих, в том числе Колладона, и эти многие поплатились за свою предубежденность.

Фарадея тоже поначалу смущала мимолетность эффекта, но он больше доверял фактам, чем теориям, и в конце концов пришел к закону электромагнитной индукции. Этот закон казался тогда физикам ущербным, уродливым, странным, лишенным внутренней логики.

Почему ток возбуждается только во время движения магнита или изменения тока в обмотке?

Этого не понимал никто. Даже сам Фарадей. Понял это через семнадцать лет двадцатишестилетний армейский хирург захолустного гарнизона в Потсдаме Герман Гельмгольц. В классической статье «О сохранении силы» он, формулируя свой закон сохранения энергии, впервые доказал, что электромагнитная индукция должна существовать именно в этом «уродливом» виде.

Независимо к этому пришел и старший друг Максвелла, Вильям Томсон. Он тоже получил электромагнитную индукцию Фарадея из закона Ампера при учете закона сохранения энергии.

Так «мимолетная» электромагнитная индукция приобрела права гражданства и была признана физиками.

Но она никак не укладывалась в понятия и аналогии статьи Максвелла «О фарадеевских силовых линиях». И это было серьезным недостатком статьи. Практически ее значение сводилось к иллюстрации того, что теории близко- и дальнодействия представляют различное математическое описание одних и тех же экспериментальных данных, что силовые линии Фарадея не противоречат здравому смыслу. И это все. Все, хотя это было уже очень много.

Из книги Максвелл автора Карцев Владимир Петрович

К ЭЛЕКТРОМАГНИТНОЙ ТЕОРИИ СВЕТА Статья «О физических силовых линиях» выходила по частям. И третья часть ее, как и обе предыдущие, содержала новые идеи чрезвычайной ценности.Максвелл писал: «Необходимо предположить, что вещество ячеек обладает эластичностью формы,

Из книги Вернер фон Сименс - биография автора Вейхер Зигфрид фон

Трансатлантический кабель. Кабельное судно “Фарадей" Очевидный успех индоевропейской линии как в техническом, так и в финансовом отношении должен был воодушевить ее создателей на дальнейшие начинания. Случай начать новое дело представился, и вдохновителем оказался

Из книги Великая Теорема Ферма автора Сингх Саймон

Приложение 10. Пример доказательства по индукции В математике важно иметь точные формулы, позволяющие вычислять сумму различных последовательностей чисел. В данном случае мы хотим вывести формулу, дающую сумму первых n натуральных чисел.Например, «сумма» всего лишь

Из книги Фарадей автора Радовский Моисей Израилевич

Из книги Роберт Вильямс Вуд. Современный чародей физической лаборатории автора Сибрук Вильям

Из книги Шелест гранаты автора Прищепенко Александр Борисович

ГЛАВА ОДИННАДЦАТАЯ Вуд растягивает свой отпускной год на три, стоит на том месте, где когда-то стоял Фарадей, и пересекает нашу планету вдоль и поперек Обыкновенный университетский профессор счастлив, если ему удается получить свободный год раз в семь лет. Но Вуд не

Из книги Курчатов автора Асташенков Петр Тимофеевич

Из книги Путешествие вокруг света автора Форстер Георг

Вот оно, открытие! Крепкий орешек Академика Иоффе и его сотрудников давно уже заинтересовало необычное поведение в электрическом поле кристаллов сегнетовой соли (двойная натрикалиевая соль виннокаменной кислоты). Исследовалась эта соль пока мало, и было только

Из книги Зодиак автора Грейсмит Роберт

Из книги 50 гениев, которые изменили мир автора Очкурова Оксана Юрьевна

1 ДЭВИД ФАРАДЕЙ И БЕТТИ ЛУ ДЖЕНСЕН Пятница, 20 декабря 1968 годаДэвид Фарадей неторопливо вел машину между пологих холмов Вальехо, не обращая особого внимания на мост «Золотые ворота», на яхты и глиссеры, мелькавшие в бухте Сан-Пабло, на четкие силуэты портовых кранов и

Из книги Неостывшая память [сборник] автора Друян Борис Григорьевич

Фарадей Майкл (род. в 1791 г. – ум. в 1867 г.) Выдающийся английский ученый, физик и химик, основоположник учения об электромагнитном поле, открывший электромагнитную индукцию – явление, которое легло в основу электротехники, а также законы электролиза, названные его

Из книги Фрэнсис Бэкон автора Субботин Александр Леонидович

Открытие В один из пасмурных осенних дней 1965 года в редакции художественной литературы Лениздата появился молодой человек с тощей канцелярской папкой в руке. Можно было со стопроцентной вероятностью догадаться, что в ней – стихи. Он был явно смущен и, не зная к кому

Из книги Танцующая в Аушвице автора Гласер Паул

Из книги Великие химики. В 2-х томах. Т. I. автора Манолов Калоян

Открытие Один из моих коллег родом из Австрии. Мы с ним дружим, и однажды вечером за разговором он замечает, что фамилия Гласер была весьма распространена в довоенной Вене. Мой отец как-то рассказывал, вспоминаю я, что наши далекие предки жили в немецкоговорящей части

Из книги Ницше. Для тех, кто хочет все успеть. Афоризмы, метафоры, цитаты автора Сирота Э. Л.

МАЙКЛ ФАРАДЕЙ (1791–1867) Воздух в переплетной мастерской был пропитан запахом столярного клея. Расположившись среди груды книг, рабочие весело переговаривались и усердно сшивали печатные листы. Майкл клеил толстый том Британской энциклопедии. Он мечтал прочитать ее

Из книги автора

Открытие юга Осенью 1881 года Ницше попал под обаяние творчества Жоржа Бизе – его «Кармен» в Генуе он слушал около двадцати раз! Жорж Бизе (1838–1875) – знаменитый французский композитор-романтистВесна 1882 года – новое путешествие: из Генуи на корабле в Мессину, о которой чуть

Тема урока:

Открытие электромагнитной индукции. Магнитный поток.

Цель: ознакомить учащихся с явлением электромагнитной индукции.

Ход урока

I. Организационный момент

II. Актуализация знаний.

1. Фронтальный опрос.

  • В чем заключается гипотеза Ампера?
  • Что такое магнитная проницаемость?
  • Какие вещества называют пара- и диамагнетиками?
  • Что такое ферриты?
  • Где применяются ферриты?
  • Откуда известно, что вокруг Земли существует магнитное поле?
  • Где находится Северный и Южный магнитные полюса Земли?
  • Какие процессы происходят в магнитосфере Земли?
  • Какова причина существования магнитного поля у Земли?

2. Анализ экспериментов.

Эксперимент 1

Магнитную стрелку на подставке поднесли к нижнему, а затем к верхнему концу штатива. Почему стрелка поворачивается к нижнему концу штатива с любой стороны южным полюсом, а к верхнему концу - северным концом? (Все железные предметы находятся в магнитном поле Земли. Под действием этого поля они намагничиваются, причем нижняя часть предмета обнаруживает северный магнитный полюс, а верхняя - южный.)

Эксперимент 2

В большой корковой пробке сделайте небольшой желобок для куска проволоки. Пробку опустите в воду, а сверху положите проволоку, располагая ее по параллели. При этом проволока вместе с пробкой поворачивается и устанавливается по меридиану. Почему? (Проволока была намагничена и устанавливается в поле Земли как магнитная стрелка.)

III. Изучение нового материала

Между движущимися электрическими зарядами действуют магнитные силы. Магнитные взаимодействия описываются на основе представления о магнитном поле, существующем вокруг движущихся электрических зарядов. Электрические и магнитные поля порождаются одними и теми же источниками - электрическими зарядами. Можно предположить, что между ними есть связь.

В 1831 г. М. Фарадей подтвердил этот экспериментально. Он открыл явление электромагнитной индукции (слайды 1,2) .

Эксперимент 1

Гальванометр подсоединяем к катушке, и будем выдвигать из нее постоянный магнит. Наблюдаем отклонение стрелки гальванометра, появился ток (индукционный) (слайд 3).

Ток в проводнике возникает, когда проводник оказывается в области действия переменного магнитного поля (слайд 4-7) .

Переменное магнитное поле Фарадей представлял как изменение числа силовых линий, пронизывающих поверхность, ограниченную данным контуром. Это число зависит от индукции В магнитного поля, от площади контура S и его ориентации в данном поле.

Ф=BS cos a - магнитный поток.

Ф [Вб] Вебер (слайд 8)

Индукционный ток может иметь разные направления, которые зависят от того, убывает или возрастает магнитный поток, пронизывающий контур. Правило, позволяющее определить направление индукционного тока, было сформулировано в 1833,г. Э. X. Ленцем.

Эксперимент 2

В легкое алюминиевое кольцо вдвигаем постоянный магнит. Кольцо отталкивается от него, а при выдвигании притягивается к магниту.

Результат не зависит от полярности магнита. Отталкивание и притягивание объясняется возникновением в нем индукционного тока.

При вдвигании магнита магнитный поток через кольцо возрастает: отталкивание кольца при этом показывает, что индукционный ток в нем имеет такое направление, при котором вектор индукции его магнитного поля противоположен по направлению вектору индукции внешнего магнитного поля.

Правило Ленца:

Индукционный ток имеет всегда такое направление, что его магнитное поле препятствует любым изменениям магнитного потока, вызывающим появление индукционного тока (слайд 9) .

IV. Проведение лабораторной работы

Лабораторная работа по теме «Опытная проверка правила Ленца»

Приборы и материалы: миллиамперметр, катушка-моток, магнит дугообразный.

Ход работы

  1. Приготовьте таблицу.

Ответ:

Следующим важным шагом в развитии электродинамики после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции английский физик Майкл Фарадей (1791 - 1867).

Фарадей, будучи еще моло дым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил злектричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если “электричество создает магнетизм” , то и наоборот, “магнетизм должен создавать электричество”. И вот еще в 1823 г. он записал в своем дневнике: “Обратить магнетизм в электричество”. В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи, и, наконец, в 1831 г. он решил ее - открыл явление электромагнитной индукции.

во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке.

Затем Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток.

наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит.

Открытие Фарадея привлекло внимание многих физиков, которые также стали изучать особенности явления электромагнитной индукции. На очереди стояла задача установить общий закон электромагнитной индукции. Нужно было выяснить, как и от чего зависит сила индукционного тока в проводнике или от чего зависит значение электродвижущей силы индукции в проводнике, в котором индуцируется электрический ток.

Эта задача оказалась трудной. Она была полностью решена Фарадеем и Максвеллом позже в рамках развитого ими учения об электромагнитном поле. Но ее пытались решить и физики, которые придерживались обычной для того времени теории дальнодействия в учении об электрических и магнитных явлениях.

Кое-что этим ученым удалось сделать. При этом им по могло открытое петербургским академиком Эмилием Христиановичем Ленцем (1804 - 1865) правило для нахождения направления индукционного тока в разных случаях электромагнитной индукции. Ленц сформулировал его так: “Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении”.


Это правило очень удобно для определения направления ицдукционного тока. Им мы пользуемся и сейчас, только оно сейчас формулируется несколько иначе, с упогребпением понятия электромагнитной индукции, которое Ленц не использовал.

Но исторически главное значение правила Ленца заключалось в том, что оно натолкнуло на мысль, каким путем подойти к нахождению закона электромагнитной индукции. Дело в том, что в атом правиле устанавливается связь между электромагнитной индукцией и явлением взаимодействии токов. Вопрос же о взаимодействии токов был уже решен Ампером. Поэтому установление этой связи на первых порах дало возможность определить выражение электродвижущей силы индукции в проводнике для ряда частных случаев.

В общем виде закон электромагнитной индукции, как мы об этом сказали, был установлен Фарадеем и Максвеллом.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока - убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Созданию первого реле предшествовало изобретение в 1824 г. англичанином Стардженом электромагнита - устройства, преобразующего входной электрический ток проволочной катушки, намотанной на железный сердечник, в магнитное поле, образующееся внутри и вне этого сердечника. Магнитное поле фиксировалось (обнаруживалось) своим воздействием на ферромагнитный материал, расположенный вблизи сердечника. Этот материал притягивался к сердечнику электромагнита.

Впоследствии эффект преобразования энергии электрического тока в механическую энергию осмысленного перемещения внешнего ферромагнитного материала (якоря) лег в основу различных электромеханических устройств электросвязи (телеграфии и телефонии), электротехники, электроэнергетики. Одним из первых таких устройств было электромагнитное реле, изобретенное американцем Дж. Генри в 1831 г.