Паропроницаемость газосиликатных блоков. Паропроницаемость строительных материалов. Правила расположения пароизолирующих слоев

В процессе стройки любой материал в первую очередь должен оцениваться по его эксплуатационно-техническим характеристикам. Решая задачу построить “дышащий” дом, что наиболее свойственно строениям из кирпича или дерева, или наоборот добиться максимальной сопротивляемости паропроницанию, необходимо знать и уметь оперировать табличными константами для получения расчетных показателей паропроницаемости строительных материалов.

Что такое паропроницаемость материалов

Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) "Строительная теплотехника", а именно главой 6 "Сопротивление паропроницанию ограждающих конструкций"

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) "Строительная теплотехника", приложении 3 "Теплотехнические показатели строительных материалов конструкций". Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость, Мг/(м*ч*Па)

Алюминий

Асфальтобетон

Гипсокартон

ДСП, ОСП

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Картон облицовочный

Керамзит

Керамзит

Керамзитобетон

Керамзитобетон

Кирпич керамический пустотелый (брутто1000)

Кирпич керамический пустотелый (брутто1400)

Кирпич красный глиняный

Кирпич, силикатный

Линолеум

Минвата

Минвата

Пенобетон

Пенобетон

Пенопласт ПВХ

Пенополистирол

Пенополистирол

Пенополистирол

ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

Пеностекло

Пеностекло

Песок

ПОЛИМОЧЕВИНА

ПОЛИУРЕТАНОВАЯ МАСТИКА

Полиэтилен

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Таблица паропроницаемости строительных материалов

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

В таблице даны значения сопротивления паропроницанию материалов и тонких слоев пароизоляции для распространенных . Сопротивление паропроницанию материалов Rп может быть определено, как частное от деления толщины материала на его коэффициент паропроницаемости μ.

Следует отметить, что сопротивление паропроницанию может быть указано только для материала заданной толщины , в отличие от , который к толщине материала не привязан и определяется только структурой материала. Для многослойных листовых материалов общее сопротивление паропроницанию будет равно сумме сопротивлений материала слоев.

Чему равно сопротивление паропроницанию? Например, рассмотрим значение сопротивления паропроницанию обыкновенного толщиной 1,3 мм. По данным таблицы это значение равно 0,016 м 2 ·ч·Па/мг. Что же значит эта величина? Означает она следующее: через квадратный метр площади такого картона за 1 час пройдет 1 мг при разности его парциальных давлений у противоположных сторон картона, равной 0,016 Па (при одинаковых температуре и давлении воздуха с обеих сторон материала).

Таким образом, сопротивление паропроницанию показывает необходимую разность парциальных давлений водяного пара , достаточную для прохода 1 мг водяного пара через 1 м 2 площади листового материала, указанной толщины, за 1 час. Согласно ГОСТ 25898-83, сопротивление паропроницанию определяют для листовых материалов и тонких слоев пароизоляции имеющих толщину не более 10 мм. Следует отметить, что пароизоляция с наибольшим сопротивлением паропроницанию в таблице — это .

Таблица сопротивления паропроницанию
Материал Толщина слоя,
мм
Сопротивление Rп,
м 2 ·ч·Па/мг
Картон обыкновенный 1,3 0,016
Листы асбоцементные 6 0,3
Листы гипсовые обшивочные (сухая штукатурка) 10 0,12
Листы древесно-волокнистые жесткие 10 0,11
Листы древесно-волокнистые мягкие 12,5 0,05
Окраска горячим битумом за один раз 2 0,3
Окраска горячим битумом за два раза 4 0,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой 0,64
Окраска эмалевой краской 0,48
Покрытие изольной мастикой за один раз 2 0,6
Покрытие битумно-кукерсольной мастикой за один раз 1 0,64
Покрытие битумно-кукерсольной мастикой за два раза 2 1,1
Пергамин кровельный 0,4 0,33
Полиэтиленовая пленка 0,16 7,3
Рубероид 1,5 1,1
Толь кровельный 1,9 0,4
Фанера клееная трехслойная 3 0,15

Источники:
1. Строительные нормы и правила. Строительная теплотехника. СНиП II-3-79. Минстрой России — Москва 1995.
2. ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию.

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: "мокрого" типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* "Строительная теплотехника", имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в - коэффициент паропроницаемости воздуха.

СНиП II-3-79* "Строительная теплотехника" определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ - толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 - газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T - температура внутри помещения, К;

p 0 - среднее давление воздуха внутри помещения, гПа;

P - атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Рис. П1

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* "Строительная теплотехника".

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика "Bautherm" уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* "Строительная теплотехника" должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.