Пример расчет дебита газовой скважины. Как рассчитать дебит скважины. Применение формулы Дюпюи

Под этим понятием подразумевают то количество воды, нефти, либо газа, которое источник может выдать за условную единицу времени – одним словом, его производительность. Измеряется этот показатель в литрах за минуту, либо в кубометрах за час.

Расчет дебита необходим как при обустройстве бытовых водоносных скважин, так и в газодобывающей и нефтяной промышленности — каждая классификация при этом имеет определенную формулу для вычислений.

1 Зачем нужно делать расчет дебита скважины?

Если вы знаете дебит своей скважины, то сможете без проблем подобрать оптимальное насосное оборудование, так как мощность насоса должна точно соответствовать продуктивности источника. К тому же, в случае возникновения каких-либо проблем, правильно заполненный паспорт скважины очень поможет ремонтной бригаде выбрать подходящий способ её восстановления

Исходя из показателей дебита, выполняется классификация скважин на три группы:

  • Низкодебитные (меньше 20 м³/сутки);
  • Среднедебитные (от 20 до 85 м³/сутки);
  • Высокодебитные (свыше 85 м³/сутки).

В газовой и нефтедобывающей промышленности эксплуатация малодебитных скважин нерентабельна. Поэтому предварительное прогнозирование их дебита является ключевым фактором, который определяет, будет ли выполняться бурение новой газовой скважины на разрабатываемой территории.

Для определения такого параметра в газовой промышленности имеется определенная формула (которая будет приведена ниже).

1.1 Как сделать расчет дебита артезианской скважины?

Для выполнения расчетов вам необходимо узнать два параметра источника – статический и динамический уровни воды.

Для этого вам понадобится веревочка, с объемным грузиком на конце (таким, чтобы при касании к водной поверхности был отчетливо слышен всплеск).

Измерить показатели можно по истечению одного дня после окончания . Выждать сутки после завершения бурения и промывки необходимо для того количество жидкости в скважине стабилизировалось. Делать замер раньше не рекомендуется — результат может быть неточным, так как в первые сутки происходит постоянное увеличение максимального уровня воды.

По истечению необходимого времени выполните замер. Делать это нужно по глубине – определите, какую длину имеет часть трубы, в которой отсутствует вода. Если скважина сделана согласно всем технологическим требованиям, то статический уровень воды в ней будет всегда выше, чем верхняя точка фильтрующего участка.

Динамический уровень – это непостоянный показатель, который будет меняться в зависимости от условий эксплуатации скважины. Когда осуществляется забор воды с источника, её количество в обсадной колонне постоянно уменьшается.В случае, когда интенсивность забора воды не превышает продуктивность источника, то спустя какое-то время вода стабилизируется на определенном уровне.

Исходя из этого, динамическим уровнем жидкости в скважине является показатель высоты водного столба, который будет держаться при постоянном заборе жидкости с заданной интенсивностью. При использовании разной мощности динамический уровень воды в скважине будет отличаться.

Оба эти показателя измеряются в «метрах от поверхности», то есть чем ниже фактическая высота столба воды в осадной колонне, тем меньшим будет динамический уровень. На практике расчет динамического уровня воды помогает выяснить, на какую максимальную глубину может быть опущен погружной насос .

Расчет динамического уровня воды осуществляется в два этапа — нужно выполнить средний и интенсивный водозабор.Производите замер после того, как насос беспрерывно проработал один час.

Определив оба фактора, вы уже можете получить ориентировочную информацию по дебиту источника – чем меньше разница между статическим и динамическим уровнем, тем большим является дебит скважины. У хорошей артезианской скважины эти показатели будут идентичными, а средний по производительности источник имеет 1-2 метра разницы.

Расчет дебита скважины может производиться несколькими способами. Вычислять дебит проще всего по следующей формуле: V*Hв/Hдин – Hстат.

В которой:

  • V– интенсивность отбора воды при замере динамического уровня скважины;
  • Н дин – динамический уровень;
  • Н стат – статический уровень;
  • Н в – высота столба воды в обсадной колонне (разница между общей высотой обсадной колонны и статическим уровнем жидкости)

Как определить дебит скважины на практике: возьмем в качестве примера скважину, высота которой составляет 50 метров, при этом перфорированная зона фильтрации расположена на 45-ти метровой глубине. Замер показал статический уровень воды глубиною 30 метров. Исходя из этого, определяем высоту столба воды: 50-30=20 м.

Чтобы определить динамический показатель, предположим, что за один час работы насосом из источника было откачано два кубометра воды. После этого замер показал, что высота столба воды в скважине стала меньше на 4 метра (произошло увеличение динамического уровня на 4 м)

То есть, Н дин = 30+4=34 м.

Для того чтобы свести возможные погрешности расчета к минимуму, после первого измерения нужно выполнить расчет удельного дебита, с помощью которого можно будет рассчитать реальный показатель. Для этого, после первого забора жидкости, необходимо дать источнику время на заполнения, чтобы уровень столба воды поднялся до статического показателя.

После чего выполняем забор воды с большей интенсивностью, чем первый раз, и повторно делаем замер динамического показателя.

Для демонстрации расчета удельного дебита используем такие условные показатели: V2 (интенсивность откачки) – 3 м³, если предположить, что при интенсивности откачки в 3 кубометра за час, Ндин составляет 38 метров, то 38-30 = 8 (h2 = 8).

Удельный дебит рассчитывается по формуле: Du = V 2 – V 1 / H 2 – H 1 , где:

  • V1 – интенсивность первого забора воды (меньшая);
  • V2 – интенсивность второго забора воды (большая);
  • H1 – уменьшение столба воды при выполнении откачки меньшей интенсивности;
  • H2 – уменьшение столба воды при откачке большей интенсивности

Вычисляем удельный дебит: Д у = 0.25 кубометра в час.

Удельный дебит нам демонстрирует, что рост динамического уровня воды на 1 метр, влечет за собой увеличение дебита скважины на 0.25 м 3 /час.

После того как рассчитан удельный и обычный показатель, можно выполнить определение реального дебита источника по формуле:

Др = (Н фильтр – Н стат) * Ду, где:

  • Н фильтр – глубина верхнего края фильтрующего участка обсадной колонны;
  • Н стат – статический показатель;
  • Ду – удельный дебит;

Исходя из предыдущих расчетов, мы имеем: Др = (45-30)*0.25 = 3.75 м 3 /час — это высокий уровень дебита для (классификация высокодебитных источников начинается с 85 м³/сутки, у нашей скважины он составляет 3,7*24=94 м³)

Как вы видите, погрешность предварительного расчета, в сравнении с итоговым результатом, составила около 60%.

2 Применение формулы Дюпюи

Классификация скважин нефтяной и газовой промышленности требует расчета их дебита по формуле Дюпюи.

Формула Дюпюи для газовой скважины имеет следующий вид:

Для вычисления дебита нефти существует три разновидности данной формулы, каждая из которых применяется для разных видов скважин — поскольку каждая классификация имеет ряд особенностей.

Для нефтяной скважины с неустановившимся приточным режимом.


Министерство образования и науки Российской Федерации

Российский государственный университет нефти и газа имени И.М. Губкина

Факультет разработки нефтяных и газовых месторождений

Кафедра разработки и эксплуатации газовых и газоконденсатных месторождений

КОНТРОЛЬНАЯ РАБОТА

по курсу «Разработка и эксплуатация газовых и газоконденсатных месторождений»

на тему: «Расчет технологического режима эксплуатации - предельный безводный дебит на примере скважины Комсомольского газового месторождения».

Выполнил Кибишев А.А.

Проверил: Тимашев А.Н.

Москва, 2014

  • 1. Краткая геолого-промысловая характеристика месторождения
  • 5. Анализ результатов расчетов

1. Краткая геолого-промысловая характеристика месторождения

Комсомольское газоконденсатнонефтяное месторождение расположено на территории Пуровского района Ямало-Ненецкого автономного округа, в 45 км южнее районного центра посёлка Тарко-Сале н 40 км восточнее посёлка Пурпе.

Ближайшие месторождения с утверждёнными в ГКЗ СССР запасами нефти Усть-Харампурское (10 - 15 км к востоку). Ново-Пурпейское (100 км к западу).

Месторождение открыто в 1967 году первоначально как газовое (С"еноманская затежь). Как нефтяное открыто в 1975 году. В 1980 году была составлена технологическая схема разработки, реализация которой началась в 1986 году.

Действующий газопровод Уренгой - Новополоцк находится в 30 км к западу от месторождения. В 35 - 40 км к западу проходит трасса железной дороги Сургут - Уренгой.

Территория представляет собой слегка всхолмленную (абсолютные отметки плюс 33, плюс 80 м), заболоченную, с многочисленными озерами равнину. Гидрографическая сеть представлена реками Пякупур и Айваседапур (притоки реки Пур). Реки судоходны лишь во время весеннего паводка (июнь), который длится один месяц.

Комсомольское месторождение расположено в пределах структуры П порядка - Пякупуровского куполовидного поднятия, входящего в состав Северного мегавала.

Пякупуровское куполовидное поднятие представляет приподнятую зону неправильной формы, ориентированную в юго-западно-северо-восточном направлениях, осложнённую несколькими локальными поднятиями III порядка.

Анализ физико-химических свойств нефти, газа и воды позволяет подобрать наиболее оптимальное скважинное оборудование, режим работы, технологию хранения и транспортировки, тип операции по обработке призабойной зоны пласта, объем закачиваемой жидкости и многое другое.

Физико-химические свойства нефти и растворенного газа Комсомольского месторождения изучались по данным исследований поверхностных и глубинных проб.

Часть параметров определялась непосредственно на скважинах (замеры давлений, температур, и др.) Анализ проб проводился в лабораторных условиях в ТЦЛ. ООО "Геохим”, ООО "Реагент" г. Тюмени.

Поверхностные пробы отбирались из выкидной линии при работе скважин на определённом режиме. Все исследования поверхностных проб нефти и газа проводились по методикам, предусмотренным Государственными стандартами.

В процессе исследований был изучен компонентный состав нефтяного газа, результаты приведены в таблице 1.

Таблица 1 - Компонентный состав нефтяного газа.

К подсчету запасов рекомендуются параметры, определенные при стандартных условиях и способе, приближенном к условиям разгазирования нефти на промысле, то есть при ступенчатой сепарации. В связи с этим результаты исследований проб нефтяным методом дифференциального разгазирования в расчете средних значений не использовались.

Свойства нефтей также изменяются по разрезу. Анализ результатов лабораторных исследований проб нефтей не позволяет выделить строгие закономерности, однако можно проследить основные тенденции изменения свойств нефтей. С глубиной плотность и вязкость нефти имеют тенденцию к уменьшению, такая же тенденция сохраняется н для содержания смол.

Растворимость газов в воде гораздо ниже, чем в нефти. При увеличении минерализации воды растворимость газов в воде уменьшается.

Таблица 2 - Химический состав пластовых вод.

2. Конструкция скважин для месторождений, вскрывших пластовую воду

В газовых скважинах может происходить конденсация парообразной воды из газа и поступление воды на забой скважины из пласта. В газоконденсатных скважинах к этой жидкости добавляется углеводородный конденсат, поступающий из пласта и образующийся в стволе скважин. В начальный период разработки залежи при высоких скоростях газового потока на забое скважин и небольшом количестве жидкости она практически полностью выносится на поверхность. По мере снижения скорости потока газа на забое и увеличения расхода жидкости, поступающей на забой скважины за счет обводнения проницаемых пропластков и увеличения объемной конденсатонасыщенности пористой среды, не обеспечивается полный вынос жидкости из скважины, происходит накопление столба жидкости на забое. Он увеличивает противодавление на пласт, приводит к существенному снижению дебита, прекращению притока газа из низкопроницаемых пропластков и даже полной остановке скважины.

Предотвратить поступление жидкости в скважину можно поддержанием условий отбора газа на забое скважины, при которых не происходит конденсации воды и жидких углеводородов в призабойной зоне пласта, недопущением прорыва конуса подошвенной воды или языка краевой воды в скважину. Кроме того, можно предотвратить поступление воды в скважину изоляцией посторонних и пластовых вод.

Жидкость с забоя скважин удаляется непрерывно или периодически. Непрерывное удаление жидкости из скважины осуществляется эксплуатацией ее при скоростях, обеспечивающих вынос жидкости с забоя в поверхностные сепараторы, отбором жидкости через спущенные в скважину сифонные или фонтанные трубы с помощью газлифта, плунжерного лифта или откачки жидкости скважинными насосами.

Периодическое удаление жидкости можно осуществить остановкой скважины для поглощения жидкости пластом, продувкой скважины в атмосферу через сифонные или фонтанные трубы без закачки или с закачкой ПАВ (пенообразователей) на забой скважины.

Выбор способа удаления жидкости с забоя скважин зависит от геолого-промысловой характеристики газонасыщенного пласта, конструкции скважины, качества цементирования заколонного пространства, периода разработки залежи, а также от количества и причин поступления жидкости в скважину. Минимальное выделение жидкости в призабойной зоне пласта и на забое скважины можно обеспечивать регулированием забойного давления и температуры. Количество воды и конденсата, выделяющихся из газа на забое скважины при забойных давлении и температуре, определяется по кривым влагоемкости газа и изотермам конденсации.

Для предупреждения прорыва конуса подошвенной воды в газовую скважину ее эксплуатируют при предельных безводных дебитах, определяемых теоретически или специальными исследованиями.

Посторонние и пластовые воды изолируются закачкой цементного раствора под давлением. Во время этих операций газонасыщенные пласты изолируют от обводненных пакерами. На подземных хранилищах газа отработан метод изоляции обводненных пропластков закачкой в них ПАВ, препятствующих поступлению воды в скважину. Опытно-промышленные испытания показали, что для получения устойчивой пены "концентрацию пенообразователя" (в пересчете на активное вещество) следует принять равной 1,5-2% объема закачиваемой жидкости, а стабилизатора пены - 0,5-1%. Для перемешивания ПАВ и воздуха на поверхности применяют специальное устройство - аэратор (типа "перфорированная труба в трубе"). Через перфорированный патрубок компрессором закачивают воздух в соответствии с заданной а, в наружную трубу закачивают водный раствор ПАВ насосом с расходом 2-3 л/с.

Эффективность метода удаления жидкости обосновывается специальными исследованиями скважин и технико-экономическими расчетами. Для поглощения жидкости пластом скважину останавливают на 2-4 ч. Дебиты скважин после пуска возрастают, однако не всегда компенсируют потери в добыче газа вследствие простоя скважин. Поскольку столб жидкости не всегда уходит в пласт, а при низких давлениях приток газа может не возобновиться, этот метод применяют редко. Подключение скважины к газосборной сети низкого давления позволяет эксплуатировать обводненные скважины, отделять воду от газа, использовать газ низкого давления в течение длительного времени. Продувка скважин в атмосферу осуществляется в течение 15-30 мин. Скорость газа на забое должна при этом достигать 3-6 м/с. Метод прост и применяется, если дебит восстанавливается на длительный срок (несколько суток). Однако этому методу присущи многие недостатки: жидкость с забоя удаляется не полностью, возрастающая депрессия на пласт приводит к интенсивному поступлению новых порций воды, разрушению пласта, образованию песчаной пробки, загрязнению окружающей среды, потерям газа.

Периодическая продувка скважин через НКТ диаметром 63-76 мм или через специально спущенные сифонные трубы диаметром 25-37 мм осуществляется тремя способами: вручную либо автоматами, установленными на поверхности или на забое скважины. От продувки в атмосферу этот метод отличается тем, что он применяется только после накопления определенного столба жидкости на забое.

Газ из скважины вместе с жидкостью поступает в газосборный коллектор низкого давления, отделяется от воды в сепараторах и поступает на компримироваиие или сжигается в факеле. Автомат, установленный на устье, периодически приоткрывает клапан на рабочей линии. Команду на это автомат получает при возрастании до заданного перепада между давлениями в затрубном пространстве и в рабочей линии. Величина этого перепада зависит от высоты столба жидкости в НКТ.

Автоматы, установленные на забое, также срабатывают при определенной высоте столба жидкости. Устанавливают один клапан на входе в НКТ или несколько пусковых газлифтных клапанов на нижнем участке НКТ.

Для накопления жидкости на забое может использоваться внутрискважинная сепарация газожидкостного потока. Такой способ сепарации с последующей продавкой жидкости в нижележащий горизонт был испытан после предварительных лабораторных исследований на скв. 408 и 328 Коробковского месторождения. При этом методе существенно уменьшаются гидравлические потери давления в стволе скважины и расходы на сбор и утилизацию пластовых вод.

Периодическое удаление жидкости можно осуществлять и при подаче ПАВ на забой скважины. При контакте воды с пенообразующим веществом и барботаже газа через столб жидкости образуется пена. Поскольку плотность пены существенно меньше плотности воды, даже сравнительно небольшие скорости газа (0,2-0,5 м/с) обеспечивают вынос пенообразной массы на поверхность.

При минерализации вод менее 3--4 г/л применяется 3-5%-ный водный раствор сульфонола, при высокой минерализации (до 15-20 г/л) используют натриевые соли сульфокислот. Жидкие ПАВ периодически закачиваются в скважину, а из твердых ПАВ (порошки "Дон", "Ладога", Триалон и др.) изготовляют гранулы диаметром 1,5-2 см или стержни длиной 60-80 см, которые затем подают на забой скважин.

Для скважин, имеющих приток воды до 200 л/сут, рекомендуется вводить до 4 г активного вещества ПАВ на 1 л воды, на скважинах с притоком до 10 т/сут это количество уменьшается.

Ввод на отдельных скважинах Майкопского месторождения до 300-400 л растворов сульфонола или порошка "Новость" приводил к увеличению дебитов в 1,5-2,5 раза по сравнению с начальными, продолжительность эффекта достигала 10-15 сут. Присутствие конденсата в жидкости снижает активность ПАВ на 10-30%, а если конденсата больше, чем воды, пена не образуется. В этих условиях применяют специальные ПАВ.

Непрерывное удаление жидкости с забоя происходит при определенных скоростях газа, обеспечивающих образование капельного двухфазного потока. Известно, что эти условия обеспечиваются при скоростях газа более 5 м/с в колоннах труб диаметром 63-76 мм при глубинах скважин до 2500 м.

Непрерывное удаление жидкости применяется в тех случаях, когда пластовая вода непрерывно поступает на забой скважины, Диаметр колонны НКТ подбирается таким, чтобы получить скорости потока, обеспечивающие вынос жидкости с забоя. При переходе на меньший диаметр труб увеличиваются гидравлические сопротивления. Поэтому переход на меньший диаметр эффективен в том случае, если потери давления на трение меньше противодавления на пласт столба жидкости, которая не удаляется с забоя.

Для удаления жидкости с забоя успешно применяются газлифтные системы с забойным клапаном. Газ отбирается по затрубному пространству, а жидкость удаляется через НКТ, на которых установлены пусковые газлифтные и забойные клапаны. На клапан действует сила сжатия пружины и разность давлений, создаваемых столбами жидкости в НКТ и в затрубье (вниз), а также сила, обусловленная давлением в за- трубном пространстве (вверх). При расчетном уровне жидкости в затрубном пространстве соотношение действующих сил становится таким, что клапан открывается и жидкость поступает в НКТ и далее в атмосферу или в сепаратор. После снижения уровня жидкости в затрубье до заданного входной клапан закрывается. Жидкость внутри НКТ накапливается до тех пор, пока не сработают пусковые газлифтные клапаны. При открытии последних газ из затрубного пространства поступает в НКТ и выносит жидкость на поверхность. После снижения уровня жидкости в НКТ пусковые клапаны закрываются, и внутри труб снова накапливается жидкость за счет перепуска ее из затрубья.

В газовых и газоконденсатных скважинах применяют плунжерный лифт типа "летающий клапан”. В нижней части колонны НКТ устанавливают трубный ограничитель, а на фонтанной арматуре - верхний амортизатор. Плунжер помещают в фонтанные трубы, которые служат ему направляющим каналом - "цилиндром", а сам он выполняет роль "поршня”.

Практикой эксплуатации установлены оптимальные скорости подъема (1-3 м/с) и падения (2-5 м/с) плунжера. При скоростях газа у башмака более 2 м/с применяют плунжерный лифт непрерывного действия.

При низких пластовых давлениях в скважинах глубиной до 2500 м применяют скважинные насосные установки. В этом случае удаление жидкости не зависит от скорости* газа и может осуществляться до самого конца разработки залежи при снижении устьевого давления до 0,2-0,4 МПа. Таким образом, скважинные насосные установки применяют в условиях, когда другие способы удаления жидкости вообще нельзя применить либо их эффективность резко падает.

Скважинные насосы устанавливают на НКТ, а газ отбирают через затрубное пространство. Чтобы исключить поступление газа на прием насоса, его размещают ниже зоны перфорации под буферным уровнем жидкости или над забойным клапаном, который пропускает в НКТ только жидкость.

месторождение скважина дебит анизотропия

3. Технологические режимы эксплуатации скважин, причины ограничения дебитов

Технологический режим работы проектных скважин относится к числу наиболее важных решений, принимаемых проектировщиком. Технологический режим работы, наряду с типом скважины (вертикальная или горизонтальная), предопределяет их число, следовательно, наземную обвязку, а в конечном счете, капвложения на освоение месторождения при заданном отборе из залежи. Трудно найти проблему при проектировании которая имела бы, как технологический режим, многовариантное и сугубо субъективное решение.

Технологический режим - это конкретные условия движения газа в пласте, призабойной зоне и скважине, характеризуемые величиной дебита и забойного давления (градиента давления) и определяемые некоторыми естественными ограничениями.

К настоящему времени выделены 6 критериев, соблюдение которых позволяет контролировать устойчивую работу скважины Эти критерии являются математическим выражением учета влияния различных групп факторов на режим эксплуатации. Наибольшее влияние на режим эксплуатации скважин оказывают:

Деформация пористой среды при создании значительных депрессий на пласт, приводящих к снижению проницаемости призабойной зоны, особенно в трещиновато- пористых пластах;

Разрушение призабойной зоны при вскрытии неустойчивых, слабоустойчивых и слабосцементированных коллекторов;

Образование песчано-жидкостных пробок в процессе эксплуатации скважин и их влияние на выбранный режим работы;

Образование гидратов в призабойной зоне и в стволе скважины;

Обводнение скважин подошвенной водой;

Коррозия скважинного оборудования в процессе эксплуатации;

Подключение скважин в общин коллектор;

Вскрытие пласта многопластовых месторождений с учетом наличия гидродинамической связи между пропластками и др.

Все эти и другие факторы выражаются следующими критериями, имеющими вид:

dP/dR = Const -- постоянный градиент, с которым должны эксплуатироваться скважины;

ДP=Pпл(t) - Pз(t) = Const -- постоянная депрессия на пласт;

Pз(t) = Const -- постоянное забойное давление;

Q(t) = Const -- постоянный дебит;

Py(t) = Const -- постоянное устьевое давление;

х(t) = Const -- постоянная скорость потока.

Для любого месторождения при обосновании технологического режима работы следует выбрать один (очень редко два) из этих критериев.

При выборе технологических режимов работы скважин, проектируемого месторождения, независимо от того, какие критерии будут приняты в качестве основных, определяющих режим эксплуатации, должны быть соблюдены следующие принципы:

Полнота учета геологической характеристики залежи, свойств флюидов, насыщающих пористую среду;

Выполнение требований закона об охране окружающей среды и природных ресурсов углеводородов газа, конденсата и нефти;

Полная гарантия надежности работы системы «пласт--начало газопровода» в процессе разработки залежи;

Максимальный учет возможность снятия всех ограничивающих производительность скважин факторов;

Своевременное изменение ранее установленных режимов, не пригодных на данной стадии разработки месторождения;

Обеспечение предусмотренного объема добычи газа, конденсата и нефти при минимальных капвложениях и эксплуатационных затратах и устойчивой работы всей системы «пласт-газопровод».

Для выбора критериев технологического режима работы скважин сначала следует установить определяющий фактор или группу факторов для обоснования режима эксплуатации проектных скважин. Особое внимание при этом проектировщик должен обратить на наличие подошвенной воды, многослойность и наличие гидродинамической связи между пластами, на параметр анизотропии, на наличие литологических экранов по площади залежи, на близость контурных вод, на запасы и проницаемость маломощных высокопроницаемых пропластков (суперколлекторов), на устойчивость пропластков, на величину предельных градиентов, с которых начинается разрушение пласта, на давление и температуры в системе «пласт-УКПГ», на изменение свойств газа и жидкости от давления, на обвязку и на условия осушки газа и др.

4. Расчет безводного дебита скважины, зависимость дебита от степени вскрытия пласта, параметра анизотропии

В большинстве газоносных пластов вертикальные и горизонтальные проницаемости различаются, причем, как правило, вертикальная проницаемость k в значительно меньше горизонтальной k г. Низкая вертикальная проницаемость снижает опасность обводнения газовых скважин, вскрывших анизотропные пласты с подошвенной водой в процессе их эксплуатации. Однако при низкой вертикальной проницаемости затрудняется и подток газа снизу в область влияния несовершенства скважины по степени вскрытия. Точная математическая связь между параметром анизотропии и величиной допустимой депрессии при вскрытии скважиной анизотропного пласта с подошвенной водой не установлена. Использование методов определения Q пр, разработанных для изотропных пластов, приводит к существенным погрешностям.

Алгоритм решения:

1. Определяем критические параметры газа:

2. Определяем коэффициент сверхсжимаемости в пластовых условиях:

3. Определяем плотность газа при стандартных условиях и далее при пластовых:

4. Находим высоту столба пластовой воды, необходимой для создания давления 0,1 МПа:

5. Определяем коэффициенты a* и b*:

6. Определяем средний радиус:

7. Находим коэффициент D:

8. Определяем коэффициенты K o , Q* и предельно безводный дебит Q пр.безв. в зависимости от степени вскрытия пласта h и для двух разных значений параметра анизотропии:

Исходные данные:

Таблица 1 - Исходные данные для расчета безводного режима.

Таблица 4 - Расчет безводного режима.

5. Анализ результатов расчетов

В результате расчета безводного режима для разных степеней вскрытия пласта и при значениях параметра анизотропии, равными 0,03 и 0,003 я получил следующие зависимости:

Рисунок 1 - Зависимость предельного безводного дебита от степени вскрытия для двух значений параметра анизотропии: 0,03 и 0,003.

Можно сделать выводы, что оптимальное значение вскрытия равно 0,72 в обоих случаях. При этом больший дебит будет при большем значении анизотропии, то есть при большем отношении вертикальной проницаемости к горизонтальной.

Список используемой литературы

1. «Инструкция по комплексному исследованию газовых и газоконденсатных скважин». М: Недра, 1980. Под редакцией Зотова Г.А.. Алиева З.С.

2. Ермилов О.М., Ремизов В.В., Ширковский А.И, Чугунов Л.С. «Физика пласта, добыча и подземное хранение газа». М. Наука, 1996 г.

3. Алиев З.С., Бондаренко В.В. Руководство по проектированию разработки газовых и газонефтяных месторождений. Печора.: Печорское время, 2002 г. - 896 с.


Подобные документы

    Географическое расположение, геологическое строение, газоносность месторождения. Анализ показателей работы фонда скважин. Расчет температурного режима для выявления дебита, при котором не будут образовываться гидраты на забое и по стволу скважины.

    дипломная работа , добавлен 13.04.2015

    Схема эксплуатационной скважины. Работы, проводимые при её освоении. Источники пластовой энергии и режимы дренирования газового пласта. Средние дебиты по способам эксплуатации скважин. Погружное и поверхностное оборудование. Товарные кондиции нефти.

    контрольная работа , добавлен 05.06.2013

    Геолого-физические характеристики объекта. Проект разработки по участку пласта Суторминского месторождения по методике Гипровосток-нефть. Схемы расстановки скважин, величина мгновенных дебитов скважин. Расчет зависимости доли нефти в продукции скважин.

    курсовая работа , добавлен 13.01.2011

    Анализ достоверности залежей запасов газа; фонда скважин, годовых отборов из месторождения, состояния обводнения. Расчет показателей разработки месторождения на истощение при технологическом режиме эксплуатации скважин с постоянной депрессией на пласт.

    курсовая работа , добавлен 27.11.2013

    Определение необходимого количества скважин для месторождения газа. Метод источников и стоков. Анализ зависимости дебита газовой скважины от ее координат внутри сектора. Распределения давления вдоль луча, проходящего через вершину сектора, центр скважины.

    курсовая работа , добавлен 12.03.2015

    Описание геологического строения месторождения. Физико-химические свойства и состав свободного газа. Расчет количества ингибитора гидратообразования для процесса его добычи. Технологический режим работы скважины. Подсчет запасов газовой залежи пласта.

    дипломная работа , добавлен 29.09.2014

    Методы расчета безводного периода работы скважин с учетом реальных свойств газа и неоднородности пласта. Газоконденсатоотдача залежей с подошвенной водой. Динамика накопленной добычи газа и вторжения воды в залежь Среднеботуобинского месторождения.

    курсовая работа , добавлен 17.06.2014

    Геолого-промысловая характеристика Самотлорского нефтяного месторождения. Тектоника и стратиграфия разреза. Состав и свойства пород продуктивных пластов. Стадии разработки месторождения, способы эксплуатации и замер скважин. Промысловая подготовка нефти.

    отчет по практике , добавлен 08.12.2015

    Подбор оборудования и выбор узлов насосный центробежной установки для эксплуатации скважины месторождения. Проверка диаметрального габарита погружного оборудования, параметров трансформатора и станции управления. Описание конструкции электродвигателя.

    курсовая работа , добавлен 24.06.2011

    Распределение давления в газовой части. Уравнение Бернулли для потока вязкой жидкости. Графики зависимости дебита скважины и затрубного давления от проницаемости внутренней кольцевой зоны. Формула Дюпюи для установившейся фильтрации в однородном пласте.

РАСЧЕТ ДЕБИТА ГАЗОВЫХ СКВАЖИН С ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ Ушакова А.В.

Ушакова Анастасия Вадимовна - магистрант, кафедра разработки и эксплуатации нефтяных и газовых месторождений, Тюменский индустриальный университет, г. Тюмень

Аннотация: для обоснования режима работы скважины и прогнозирования параметров разработки необходимо, в первую очередь, произвести расчет продуктивности скважины - установить зависимость между дебитом скважины и депрессией. Дебит скважины, а также глубина залегания пласта, на который планируется бурение, влияют на конструкцию скважины, кроме того при выборе конструкции необходимо обеспечить минимальное значения потерь давления по стволу. В случае горизонтальной (пологой) скважины потери давления проявляются также в горизонтальной части ствола. В данной работе описаны основные виды гидравлических сопротивлений, встречающиеся при движении газа к горизонтальной скважине, и приведены методы расчета профиля притока и дебита горизонтальной скважины.

Ключевые слова: горизонтальная газовая скважина, профиль притока, потери давления.

Вопросом притока газа к горизонтальным скважинам занимались З.С. Алиев, В.В. Шеремет , В.А. Черных , Сохошко С.К. , Телков А.П. .

Основные трудности аналитических решений задач притока к горизонтальным скважинам связаны с нелинейной зависимостью между градиентом давления и скоростью фильтрации, а также определением потерь на трение при движении газа и газоконденсатной смеси в горизонтальном стволе, особенно при значительных дебитах и большой длине ствола .

Сохошко С. К. выделяет 3 группы работ, посвященных производительности горизонтальных газовых скважин:

1 Сравнительно точное решение о притоке газа к горизонтальной скважине при линейной зависимости между градиентом давления и скоростью фильтрации;

2. Приближенное решение задачи о притоке газа к горизонтальной скважине при нелинейной зависимости между градиентом давления и скоростью фильтрации;

3 Точное численное решение задачи о притоке газа к горизонтальной скважине при нелинейном законе фильтрации, изложенное в работе и линейном законе;

Недостатком данных работ является то, что в них принимается постоянным забойное давление по длине горизонтального ствола, а также не учитывается влияние устьевого давления на продуктивность горизонтальных скважин. В результате, получено прямое отношение продуктивности и длины горизонтального участка.

Тем не менее, многие исследователи заявляют, что данная схема расчета производительности в корне не верна . Для горизонтальных скважин знание о распределении забойного давления по стволу имеет более важную роль, чем для вертикальных. Это связано с тем, что площадь зоны дренирования в горизонтальной скважине больше по сравнению в вертикальной.

Одно из решений, в котором учитывается изменение забойного давления при расчете производительности, получено З.С. Алиевым и А.Д. Седых . Также решение профиля притока впервые с учетом всех видов гидравлических сопротивлений, в том числе местных сопротивлений перфорационных отверстий, их расположения и плотности, а также с учетом угла наклона для горизонтальной газовой скважины получено Сохошко С.К. .

| 37 | Современные инновации № 2(30) 2018

Список литературы

1. Алиев З.С., Шеремет В.В. Определение производительности горизонтальных скважин, вскрывших газовые и газонефтяные пласты М.: Недра, 1995.

Формула расчета дебита нефтяной скважины – нужная вещь в современном мире. Все предприятия, которые добывают нефтепродукты, должны рассчитывать дебит для своих детищ. Многие используют формулу Дюпюи – французского инженера, многие годы посвятившего изучению движения грунтовых вод. Его формула поможет легко понять, стоит ли производительность того или иного источника денег на оборудование скважины.

Что такое дебит нефтяной скважины?

Дебит – объем жидкости, поставляемой через скважину за определенную единицу времени. Многие пренебрегают его расчетам при установке насосного оборудования, но это может оказаться фатально для всей конструкции. Интегральная величина, определяющая количество нефти рассчитывается по нескольким формулам, которые будут приведены ниже.

Дебит часто называют производительностью насоса. Но эта характеристика немного не подходит под определение, так как все свойства насоса имеют свои погрешности. И определенный объем жидкостей, и газов иногда в корне отличается от заявленного.

Изначально этот показатель должен просчитываться для выбора насосного оборудования. Когда вы будете знать, какой производительностью участок, можно будет сразу исключить из выбираемого списка оборудования несколько неподходящих агрегатов.

Обязательно нужно рассчитывать дебит в нефтедобывающей промышленности, так как малопроизводительные участки будут нерентабельны для любого предприятия. И неправильно подобранная насосная установка из-за упущенных расчетов может принести компании убытки, а не предполагаемую со скважины прибыль.

Он обязателен к подсчету на всех типах нефтедобывающих предприятий – даже дебиты близлежащих скважин могут слишком отличаться от новой. Чаще всего, огромная разница лежит в величинах, подставляемых в формулы для подсчета. К примеру, проницаемость пласта может существенно отличаться на километре под землей. При плохой проницаемости, показатель будет получаться меньше, а значит, и прибыльность скважины будет уменьшаться в геометрической прогрессии.

Дебит нефтяной скважины подскажет не только как правильно выбрать оборудование, но и где его установить. Установка новой нефтяной вышки –рискованное дело, так как даже самые умные геологи не могут разгадать тайны земли.

Да, созданы тысячи моделей профессионального оборудования, которое определяет все нужные параметры для бурения новой скважины, но лишь результат, увиденный после этого процесса, сможет показать правильные данные. Исходя из них, и стоит высчитывать прибыльность того или иного участка.

Методы расчета дебитов скважин.

Существует всего несколько методов для подсчета дебита нефтяного местарождения – стандартный и по Дюпюи. Формула человека, который практически всю жизнь занимался изучением этого материала и выведением формулы, гораздо точнее показывает результат, ведь в ней гораздо больше данных для подсчета.

Формула расчета дебита скважин

Для расчетов по стандартной формуле - D = H x V/(Hд – Hст), нужна всего лишь такая информация:

  • Высота водного столба;
  • Производительность насоса;
  • Статический и динамический уровень.

Статический уровень в этом случае – расстояние от начала подземных вод до первых слоев почвы, а динамический уровень – абсолютная величина, получаемая при замере уровня воды после откачивания.

Также существует понятие, как оптимальный показатель дебита нефтяного месторождения. Определяется он, как для общего установления уровня депрессии отдельной скважины, так и всего пласта в целом. Формула высчитывания среднего уровня депрессии месторождения определяется, как Р заб=0. Дебит одной скважины, который был получен при оптимальной депрессии, и будет являться оптимальным дебитом нефтяной скважины.

Однако такая формула и сам показатель оптимального дебита применяется не на каждом месторождении. Из-за механического и физического давления на пласт, может происходить обрушение части внутренних стенок нефтяных скважин. По указанным причинам, часто приходится уменьшать потенциальный дебит механическим способом, чтобы сохранить бесперебойность процесса добычи нефти и сохранения прочности стенок.

Это – простейшая формула расчета, которая не сможет с точностью получить правильный результат – будет большая погрешность. Для того чтобы избежать неправильных расчетов и направить себя на получение более точного результата, используют формулу Дюпюи, в которой необходимо взять гораздо больше данных, чем в выше представленной.

Но Дюпюи был не просто умным человеком, но и отличным теоретиком, поэтому он разработал две формулы. Первая – для потенциальной продуктивности и гидропроводности, которые вырабатывают насос и месторождение нефти. Вторая – для неидеального месторождения и насоса, с их фактической продуктивностью.

Рассмотрим первую формулу:

N0 = kh/ub * 2Pi/ln(Rk/rc).

Эта формула для потенциальной производительности включает в себя:

N0 – потенциальная продуктивность;

Kh/u – коэффициент, определяющий свойство гидропроводности нефтяного пласта;

B – коэффициент расширения по объему;

Pi – Число П = 3,14…;

Rk – радиус контурного питания;

Rc – долотный радиус скважины по расстоянию до вскрытого пласта.

Вторая формула имеет такой вид:

N = kh/ub * 2Pi/(ln(Rk/rc)+S).

Этой формулой для фактической продуктивности месторождения сейчас пользуются абсолютно все компании, которые бурят нефтяные скважины. В ней поменяны только две переменные:

N – фактическая продуктивность;

S–скин-фактор (параметр фильтрационного сопротивления течению).

В некоторых способах для повышения дебита нефтяных месторождений, применяется технология гидравлического разрыва пластов с полезным ископаемым. Она подразумевается образованием механическим способом трещин в продуктивной породе.

Естественный процесс снижения дебита нефтяных месторождений происходит с показателем в 1-20 процентов в год, исходя из первоначальных данных этого показателя при запуске скважины. Применяемые и описанные выше технологии могу интенсифицировать выработку нефти из скважины.

Периодически может проводиться механическая регулировка дебита нефтяных скважин. Она знаменуется повышением забойного давления, что приводит к снижению уровня добычи и высокому показателю возможностей отдельно взятого месторождения

Для повышения показателей и уровня дебита может применяться также термокислотный метод обработки. С помощью нескольких видов растворов, таких как кислотная жидкость, производится очистка элементов месторождения от смолянистых отложений, соли и других химических компонентов, мешающих качественному и результативному проходу добываемой породы.

Кислотная жидкость изначально проникает в скважину и заполняет площадь перед пластом. Далее производится процесс закрытия задвижки и под давлением кислотный раствор проникает в глубинный пласт. Оставшиеся детали этой жидкости промываются нефтью или водой после продолжения работы по добыче.

Расчет дебита следует проводить периодически для формирования стратегии векторного развития нефтедобывающего предприятия.

Расчет производительности скважины

Владимир Хомутко

Время на чтение: 4 минуты

А А

Способы расчёта дебита нефти

При определении продуктивности определяют её дебит, который является очень важным показателем при расчете планируемой продуктивности.

Важность этого показателя трудно переоценить, поскольку с его помощью определяют – окупит полученное с конкретного участка сырье стоимость его разработки или нет.

Формул и методик расчета этого показателя несколько. Многие предприятия пользуются формулой французского инженера Дюпюи ( Дюпуи), который много лет посвятил изучению принципов движения грунтовых вод. С помощью расчета по этой методике достаточно просто определить, целесообразно ли разрабатывать тот или иной участок месторождения с экономической точки зрения.

Дебитом в данном случае называется объем жидкости, который поставляет скважина за определенный промежуток времени.

Стоит сказать, что достаточно часто добытчики пренебрегают расчетом этого показателя при установке добывающего оборудования, однако это может привести к весьма печальным последствиям. Рассчитываемая величина, которая определяет количество добываемой нефти, имеет несколько методик определения, о которых мы поговорим далее.

Зачастую этот показатель по-другому называют «производительность насоса», однако это определение не совсем точно характеризует получаемую величину, поскольку свойства насоса обладают собственными погрешностями. В связи с этим определяемый расчетным путем объем жидкостей и газов в некоторых случаях сильно разнится с заявленным.

Вообще значение этого показателя рассчитывается для того, чтобы выбрать насосное оборудование. Заранее определив с помощью расчета производительность определенного участка, можно уже на этапе планирования разработки исключить не подходящие по своим параметрам насосы.

Расчет этого значения необходим любому добывающему предприятию, поскольку нефтеносные участки с низкой производительностью просто могут оказаться нерентабельными, и разработка их будет убыточной. Кроме того, неверно выбранное насосное оборудование из-за вовремя не сделанных расчетов может привести к тому, что предприятие вместо планируемой прибыли получит существенные убытки.

Еще одним важным фактором, свидетельствующим об обязательности такого расчета для каждой конкретной скважины, является тот факт, что даже дебиты расположенных поблизости уже работающих скважин могут существенно отличаться от дебита новой.

Чаще всего такая существенная разница объясняется конкретными значениями подставляемых в формулы величин. Например, проницаемость пласта может иметь существенные различия в зависимости от глубины залегания продуктивного слоя, а чем ниже проницаемость пласта, тем меньше производительность участка и, разумеется, ниже его рентабельность.

Расчет дебита не только помогает при выборе насосного оборудования, но позволяет определить оптимальное место бурения колодца.

Установка новой добывающей вышки является рискованным делом, поскольку даже самые квалифицированные специалисты в области геологии до конца не знают всех тайн земли.

В настоящее время существует множество разновидностей профессионального оборудования для нефтедобычи, но для того, чтобы сделать правильный выбор, необходимо сначала определить все необходимые буровые параметры. Правильный расчет таких параметров позволит подобрать оптимальный рабочий комплект, который будет наиболее эффективен для участка с конкретной производительностью.

Способы расчета этого показателя

Как мы сказали ранее, методов для расчета этого показателя существует несколько.

Чаще всего используют две методики – стандартную, и с применением упомянутой нами выше формулы Дюпюи.

Стоит сразу сказать, что второй способ хотя и сложнее, но дает более точный результат, поскольку французский инженер всю свою жизнь посвятил изучению этой сферы, в результате чего в его формуле используется гораздо больше параметров, чем в стандартной методике. Однако, мы рассмотрим оба способа.

Стандартный расчет

Эта методика основана на следующей формуле:

D = H x V / (Hд – Hст), где

D – это значение дебита скважины;

Н – это высота водного столба;

V – производительность насоса;

Нд – динамический уровень;

Нст – статический уровень.

За показатель статического уровня в данном случае берется расстояние от начального уровня подземных вод до начальных почвенных слоев, а в качестве динамического уровня используется абсолютная величина, которую определяют с помощью замера уровня воды после её откачивания, используя измерительный инструментарий.

Существует понятие оптимального показателя дебита нефтеносного участка месторождения. Его определяют как для определения общего уровня депрессии конкретной скважины, так и для всего продуктивного пласта целиком.

Формула расчета среднего уровня депрессии подразумевает значение забойного давления Рзаб = 0. Дебит конкретной скважины, который был рассчитан для оптимального показателя депрессии, и является оптимальным значением этого показателя.

Механическое и физическое давление на пласт может привести к обрушению некоторых частей внутренних стенок ствола. Вследствие этого, потенциальный дебит нередко приходится уменьшать механическим способом, чтобы не нарушать бесперебойность добычи и сохранить прочность и целостность стенок ствола.

Как видите, стандартная формула является простейшей, в результате чего результат она дает с достаточно существенной погрешностью. Чтобы получить более точный и объективный результат, целесообразно использовать пусть и более сложную, но гораздо более точную формулу Дюпюи, учитывающую большее количество важных параметров конкретного участка.

Расчет по Дюпюи

Стоит сказать, что Дюпюи был не только квалифицированным инженером, но и прекрасным теоретиком.

Он вывел даже не одну, а две формулы, первая из которых применяется для определения потенциальной гидропроводности и продуктивности для насосного оборудования и нефтеносного пласта, в вторая позволяет проводить расчет для не идеальных насоса и месторождения, основываясь на показателях их фактической продуктивности.

Итак, разберем первую формулу Дюпюи:

N0 = kh / ub * 2∏ / ln(Rk/rc), где

N0 – это показатель потенциальной продуктивности;

Kh/u – коэффициент гидропроводности нефтеносного пласта;

b – коэффициент, учитывающий расширение по объему;

∏ – это число Пи = 3,14;

Rk – это значение радиуса контурного питания;

Rc – значение долотного радиуса, измеренного по всему расстоянию до вскрытого продуктивного пласта.

Вторая формула Дюпюи:

N = kh/ub * 2∏ / (ln(Rk/rc)+S, где

N – это показатель фактической продуктивности;

S – так называемый скин-фактор, который определяет фильтрационное сопротивление течению.

Остальные параметры расшифровываются так же, как и в первой формуле.

Вторая формула Дюпюи для определения фактической продуктивности конкретного нефтеносного участка в настоящее время используется практически всеми добывающими компаниями.

Стоит сказать, что для повышения производительности месторождения в некоторых случаях используют технологию гидравлического разрыва продуктивного пласта, суть которой – механическое образование в нем трещин.

Периодически возможно проведение так называемой механической регулировки дебита нефти в скважине. Она проводится с помощью повышения забойного давления, которое приводит к снижению уровня добычи и показывает фактические возможности каждого нефтеносного участка месторождения.

Кроме того, чтобы повысить дебит, применяют и термокислотную обработку.

При помощи различных растворов, содержащих в себе кислотные жидкости, производят очистку породы от образовавшихся в процессе бурения и эксплуатации отложений смол, солей и прочих химических веществ, которые мешают качественной и эффективной разработке продуктивного пласта.

Сначала кислотную жидкость заливают в ствол до тех пор, пока она не заполнит площадь перед разрабатываемым пластом. Затем закрывают задвижку, и под давлением этот раствор проходит дальше вглубь. Остатки этого раствора вымывают либо нефтью, либо водой после возобновления добычи углеводородного сырья.

Стоит сказать, что естественное снижение производительности нефтяных месторождений находится на уровне от 10 до 20 процентов в год, если считать от первоначальных значений этого показателя, полученных на момент запуска добычи. Описанные выше технологии позволяют увеличить интенсивность нефтедобычи на месторождении.

Дебит необходимо рассчитывать через определенные периоды времени. Это помогает при формировании стратегии развития любой современной нефтедобывающей компании, которая поставляет сырье предприятиям, производящим различные нефтепродукты.