Равномерное движение определение физика. Механическое движение: равномерное и неравномерное

Как вы думаете, движетесь вы или нет, когда читаете этот текст? Практически каждый из вас сразу ответит: нет, не двигаюсь. И будет неправ. Некоторые могут сказать: двигаюсь. И тоже ошибутся. Потому, что в физике некоторые вещи не совсем такие, какими кажутся на первый взгляд.

Например, понятие механического движения в физике всегда зависит от точки (или тела) отсчета. Так летящий в самолете человек перемещается относительно оставшихся дома родных, но находится в состоянии покоя относительно друга, сидящего рядом. Так вот скучающие родственники или спящий на плече друг - это, в данном случае, тела отсчета для определения, движется наш вышеупомянутый человек или нет.

Определение механического движения

В физике определение механического движения, изучаемое в седьмом классе, следующее: изменение положения тела относительно других тел с течением времени называется механическим движением. Примерами механического движения в быту будут движение автомобилей, людей и пароходов. Комет и кошек. Пузырьков воздуха в закипающем чайнике и учебников в тяжелом рюкзаке школьника. И всякий раз высказывание о движении либо покое одного из этих предметов (тел) будет лишенным смысла без указания тела отсчета. Поэтому в жизни мы чаще всего, когда говорим о движении, имеем в виду движение относительно Земли или статичных объектов - домов, дорог и так далее.

Траектория механического движения

Нельзя также не упомянуть такую характеристику механического движения, как траектория. Траектория - это линия, по которой движется тело. Например, отпечатки ботинок на снегу, след самолета в небе и след слезы на щеке - все это траектории. Могут они быть прямыми, изогнутыми или ломаными. А вот длина траектории, или же сумма длин - это путь, пройденный телом. Обозначается путь буквой s. И измеряется в метрах, сантиметрах и километрах, либо же в дюймах, ярдах и футах, в зависимости от того, какие в этой стране приняты единицы измерения.

Виды механического движения: равномерное и неравномерное движение

Какие бывают виды механического движения? Например, во время поездки на машине водитель движется с разной скоростью, когда едет по городу и практически с одинаковой скоростью, когда выезжает на трассу за городом. То есть он движется либо неравномерно, либо равномерно. Так вот движение, в зависимости от пройденного пути за равные промежутки времени называют равномерным либо неравномерным.

Примеры равномерного и неравномерного движения

Примеров равномерного движения в природе очень мало. Почти равномерно движется вокруг Солнца Земля, капают капли дождя, всплывают пузырьки в газировке. Даже пуля, выпущенная из пистолета, движется прямолинейно и равномерно только на первый взгляд. От трения о воздух и притяжения Земли полет ее постепенно становится медленнее, а траектория снижается. Вот в космосе пуля может двигаться действительно прямолинейно и равномерно, пока не столкнется с каким-либо другим телом. А с неравномерным движением дело обстоит куда как лучше - примеров множество. Полет мяча во время игры в футбол, движения льва, охотящегося на добычу, путешествия жвачки во рту семиклассника и бабочки, порхающей над цветком, - все это примеры неравномерного механического движения тел.

Знакомство с классическим курсом физики начинается с простейших законов, которым подчиняются тела, перемещающиеся в пространстве. Прямолинейное равномерное движение - самый простой вид изменения положения тела в пространстве. Такое движение изучается в разделе кинематики.

Противник Аристотеля

Галилео Галилей остался в анналах истории как один из величайших естествоиспытателей времен позднего Ренессанса. Он отважился проверять утверждения Аристотеля - неслыханная по тем временам ересь, ибо учение этого древнего мудреца всячески поддерживалось церковью. Идея равномерного движения тогда не рассматривалась - тело или двигалось «вообще», или находилось в состоянии покоя. Понадобились многочисленные эксперименты для того, чтобы объяснить природу движения.

Опыты Галилея

Классическим примером изучения движения стал известный эксперимент Галилея, когда он бросал различные тяжести со знаменитой Пизанской башни. В результате этого эксперимента выяснилось, что тела, имеющие разные массы, падают с одинаковой скоростью. Позднее эксперимент был продолжен в горизонтальной плоскости. Галилей предложил, что любой шар при отсутствии трения будет катиться с горки сколь угодно долго, при этом скорость его так же будет постоянной. Так, экспериментальным путем, Галилео Галилей открыл сущность первого закона Ньютона - при отсутствии внешних сил тело движется по прямой с постоянной скоростью. Прямолинейное равномерное движение - это и есть выражение первого закона Ньютона. В настоящее время различными видами движения занимается особый раздел физики - кинематика. В переводе с греческого данное наименование означает - учение о движении.

Новая система координат

Анализ равномерного движения был бы невозможен без создания нового принципа определения положения тел в пространстве. Сейчас мы называем его прямолинейной системой координат. Автор ее - известный философ и математик Рене Декарт, благодаря которому мы и называем систему координат декартовой. В таком виде очень удобно представлять траекторию движения тела в трехмерном пространстве и анализировать такое перемещения, привязывая положение тела к координатным осям. Прямоугольная система координат представляет собой две пересекающиеся под прямым углом прямые. Точка пересечения обычно принимается за начало отсчета измерений. Горизонтальная линия называется абсциссой, вертикальная - ординатой. Поскольку мы живем в трехмерном пространстве, к плоскостной системе координат добавляют и третью ось - ее называют аппликатой.

Определение скорости

Скорость невозможно измерить так, как мы измеряем расстояние и время. Это всегда величина производная, которая и записывается в виде соотношения. В самом общем виде скорость тела равна отношению пройденного расстояния к затраченному времени. Формула для скорости имеет вид:

Где d- пройденное расстояние, t - затраченное время.

Направление напрямую влияет на векторное обозначение скорости (величина, определяющая время - скаляр, то есть оно направления не имеет).

Представление о равномерном движении

При равномерном движении тело движется вдоль прямой с постоянной скоростью. Поскольку скорость - это векторная величина, ее свойства описываются не только числом, но и направлением. Поэтому лучше уточнить определение, и сказать, что скорость равномерного прямолинейного движения постоянна по модулю и направлению. Чтобы описать прямолинейное равномерное движение, достаточно использовать декартову систему координат. В этом случае ось ОХ будет удобно проложить по направлению движения.

При равномерном перемещении положение тела в любой период времени определяется всего одной координатой - x. Направление движения тела и вектор скорости направлены вдоль оси х, при этом начало движения можно отсчитывать от нулевой отметки. Поэтому анализ перемещения тела в пространстве можно свести к проекции траектории движения на ось ОХ и описывать процесс алгебраическими уравнениями.

Равномерное движение с точки зрения алгебры

Допустим, что в определенный момент времени t 1 тело находится в точке на оси абсцисс, координата которой равна х 1 . Черед некоторой промежуток времени тело изменит свое местоположение. Теперь координата его нахождения в пространстве будет равняться х 2 . Сведя рассмотрение движения тела к его расположению на оси координат, можно определить, что путь, который прошло тело, равен разнице начальной и конечной координаты. Алгебраически это записывается так: Δs = x 2 - x 1.

Величина перемещения

Величина, определяющая перемещение тела, может быть и больше, и меньше 0. Все зависит от того, в какую сторону относительно направления оси перемещалось тело. В физике можно записывать и отрицательное, и положительное перемещение - все зависит от выбранной для отсчета системы координат. Прямолинейное равномерное движение происходит со скоростью, которая описывается формулой:

При этом скорость будет больше нуля, если тело движется вдоль оси ОХ от нуля; меньше нуля - если движение идет справа налево по оси абсцисс.

Такая краткая запись отражает суть равномерного прямолинейного движения - какими бы ни были изменения координат, скорость перемещения остается неизменной.

Галилею мы обязаны еще одной гениальной мыслью. Анализируя движение тела в мире, лишенном трения, ученый настаивал на том, что силы и скорости не зависят друг от друга. Эта блестящая догадка нашла свое отражение во всех существующих законах движения. Так, силы, действующие на тело, не зависят друг от друга и действуют так, будто других не существует. Применяя это правило к анализу движения тела, Галилей понял, что всю механику процесса можно разложить на силы, которые складываются геометрически (векторно) или линейно, если действуют в одном направлении. Приблизительно это будет выглядеть так:

При чем же здесь равномерное движение? Все очень просто. На очень малых промежутках пути скорость движения тела вполне можно считать равномерной, с прямолинейной траекторией. Таким образом, возникла блестящая возможность изучить более сложные движения, сводя их к простым. Так изучалось равномерное движение тела по окружности.

Равномерное движение по окружности

Равномерное и равноускоренное движение можно наблюдать в перемещении планет по своим орбитам. В этом случае планета участвует в двух видах независимых движений: она равномерно перемещается по окружности и в тоже время равноускоренно движется к Солнцу. Такое сложное движение объясняется силами, действующими на планеты. Схема воздействия планетарных сил представлена на рисунке:

Как можно видеть, планета участвует в двух разных движениях. Геометрическое сложение скоростей и даст нам скорость планеты на данном отрезке пути.

Равномерное движение - основа для дальнейшего изучения кинематики и физики в целом. Это элементарный процесс, к которому можно свести гораздо более сложные перемещения. Но в физике, как и везде, великое начинается с малого, и запуская в безвоздушное пространство космические корабли, управляя подводными лодками, следует не забывать о тех простейших опытах, на которых Галилей когда-то проверял свои открытия.

Как кинематика, встречается такое, при котором тело за любые произвольно взятые равные отрезки времени проходит одинаковые по длине отрезки пути. Это - равномерное движение. Примером может служить движение конькобежца в середине дистанции или поезда на ровном перегоне.

Теоретически тело может двигаться по любой траектории, в том числе криволинейной. При этом существует понятие пути - так называется расстояние, пройденное телом вдоль своей траектории. Путь - скалярная величина, и его не следует путать с перемещением. Последним термином мы обозначаем отрезок между начальной точкой пути и конечной, который при криволинейном движении заведомо не совпадает с траекторией. Перемещение - имеющее числовое значение, равное длине вектора.

Возникает закономерный вопрос - в каких случаях речь идет о равномерном движении? Будет ли считаться равномерным движение, например, карусели по кругу с одинаковой скоростью? Нет, так как при таком движении вектор скорости ежесекундно меняет свое направление.

Другой пример - автомобиль едет по прямой с одинаковой скоростью. Такое движение будет считаться равномерным, пока автомобиль никуда не сворачивает и на спидометре его одно и то же число. Очевидно, что равномерное движение всегда происходит по прямой, вектор скорости при этом не меняется. Путь и перемещение в данном случае будут совпадать.

Равномерное движение - это движение по прямой траектории с постоянной скоростью, при котором длины пройденных промежутков пути за любые равные отрезки времени одинаковы. Частным случаем равномерного движения можно считать состояние покоя, когда скорость и пройденный путь равны нулю.

Скорость является качественной характеристикой равномерного движения. Очевидно, что разные объекты проходят один и тот же путь за разное время (пешеход и автомобиль). Отношение пройденного равномерно двигающимся телом пути к отрезку времени, за который данный путь пройден, называется скоростью движения.

Таким образом, формула, описывающая равномерное движение, выглядит так:

V = S / t ; где V - скорость движения (является векторной величиной);

S - путь или перемещение;

Зная скорость движения, являющуюся неизменной, можем вычислить путь, пройденный телом за любой произвольный отрезок времени.

Иногда ошибочно смешивают равномерное и равноускоренное движение. Это совершенно разные понятия. - один из вариантов неравномерного движения (т. е. такого, при котором скорость не является постоянной величиной), обладающий важным отличительным признаком - скорость при таком изменяется за одни и те же промежутки времени на одну и ту же величину. Эта величина, равная отношению разности скоростей к отрезку времени, за которое скорость изменилась, называется ускорением. Данное число, показывающее, на какую величину увеличилась или уменьшилась скорость за единицу времени, может быть большим (тогда говорят, что тело быстро набирает или теряет скорость) или незначительным, когда объект разгоняется или тормозит более плавно.

Ускорение, так же как и скорость, является физической векторной величиной. Вектор ускорения по направлению всегда совпадает с вектором скорости. Примером равноускоренного движения может служить случай предмета, при котором притяжения предмета земной поверхностью) изменяется в единицу времени на определенную величину, называемую ускорением свободного падения.

Равномерное движение теоретически можно рассматривать как частный случай равноускоренного. Очевидно, что раз скорость при таком движении не меняется, то ускорения или замедления не происходит, следовательно, величина ускорения при равномерном движении всегда равняется нулю.

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

– это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

V(вектор) = s(вектор) / t

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

s(вектор) = V(вектор) t

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

v x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

4. Равнопеременное движение.

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

V=lim(^t-0) ^s/^t

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

V(вектор) = s’(вектор)

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

а(вектор) = lim (t-0) ^v(вектор)/^t

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

a(вектор) = v(вектор)" = s(вектор)"

Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости,формула ускорения будет следующей:

a(вектор) = v(вектор)-v0(вектор)/t

Отсюда формула скорости равнопеременного движения в любой момент времени:

v(вектор) = v 0 (вектор) + a(вектор)t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

v x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

95. Приведите примеры равномерного движения.
Встречается очень редко, например, движение Земли вокруг Солнца.

96. Приведите примеры неравномерного движения.
Движение автомобиля, самолета.

97. Мальчик скатывается на салазках с горы. Можно ли это движение считать равномерным?
Нет.

98. Сидя в вагоне движущегося пассажирского поезда и наблюдая движение встречного товарного поезда, нам кажется, что товарный поезд идет гораздо быстрее, чем шел до встречи наш пассажирский поезд. Почему это происходит?
Относительного пассажирского поезда, товарный движется с суммарной скоростью пассажирского и товарного поездов.

99. В движении или покое находится водитель движущегося автомобиля относительно:
а) дороги;
б) сидения автомобиля;
в) автозаправки;
г) Солнца;
д) деревьев вдоль дороги?
В движении: а, в, г, д
В покое: б

100. Сидя в вагоне движущегося поезда, мы наблюдаем в окне автомобиль, который уходит вперед, затем кажется неподвижным, и, наконец, движется назад. Как объяснить то, что мы видим?
Вначале скорость автомобиля выше скорости поезда. Затем скорость автомобиля становится равной скорости поезда. После этого, скорость автомобиля уменьшается, по сравнению со скоростью поезда.

101. Самолет выполняет «мертвую петлю». Какую траекторию движения видят наблюдатели с земли?
Кольцевую траекторию.

102. Приведите примеры движения тел по криволинейным траекториям относительно земли.
Движение планет вокруг Солнца; движение катера по реке; полет птицы.

103. Приведите примеры движения тел, имеющих прямолинейную траекторию относительно земли.
Движущийся поезд; идущий прямо человек.

104. Какие виды движения мы наблюдаем при письме шариковой ручкой? Мелом?
Равномерное и неравномерное.

105. Какие части велосипеда при его прямолинейном движении описывают относительно земли прямолинейные траектории, а какие – криволинейные?
Прямолинейное: руль, седло, рама.
Криволинейное: педали, колеса.

106. Почему говорят, что Солнце всходит и заходит? Что в данном случае является телом отсчета?
Телом отсчета рассматривается Земля.

107. Два автомобиля движутся по шоссе так, что некоторое расстояние между ними не меняется. Указать, относительно каких тел каждый из них находится в покое и относительно каких тел они в течение этого промежутка времени движутся.
Относительно друг друга автомобили находятся в покое. Относительно окружающих предметов автомобили движутся.

108. Санки скатываются с горы; шарик скатывается по наклонному желобу; камень, выпущенный из рук, падает. Какие из этих тел движутся поступательно?
Поступательно движутся санки с горы и камень, выпущенный из рук.

109. Книга, установленная на столе в вертикальном положении (рис. 11, положение I), от толчка падает и занимает положение II. Две точки А и В на переплете книги при этом описали траектории АА1 и ВВ1. Можно ли сказать, что книга двигалась поступательно? Почему?