Угол между векторами вычисляется по формуле. Скалярное произведение векторов

При изучении геометрии немало вопросов возникает по теме векторов. Особенные трудности обучающийся испытывает при необходимости найти углы между векторами.

Основные термины

Перед тем как рассматривать углы между векторами, необходимо ознакомиться с определением вектора и понятием угла между векторами.

Вектором называют отрезок, имеющий направление, то есть отрезок, для которого определено его начало и конец.

Углом между двумя векторами на плоскости, имеющих общее начало, называют меньший из углов, на величину которого требуется переместить один из векторов вокруг общей точки, до положения, когда их направления совпадут.

Формула для решения

Поняв, что собой представляет вектор и как определяется его угол, можно вычислить угол между векторами. Формула решения для этого достаточно проста, и результатом её применения будет значение косинуса угла. Согласно определению, он равен частному скалярного произведения векторов и произведения их длин.

Скалярное произведение векторов считается как сумма помноженных друг на друга соответствующих координат векторов-сомножителей. Длина вектора, или его модуль, вычисляется как квадратный корень из суммы квадратов его координат.

Получив значение косинуса угла, вычислить величину самого угла можно с помощью калькулятора или воспользовавшись тригонометрической таблицей.

Пример

После того как вы разберетесь с тем, как вычислить угол между векторами, решение соответствующей задачи станет простым и понятным. В качестве примера стоит рассмотреть несложную задачу о нахождении величины угла.

Первым делом удобнее будет вычислить необходимые для решения значения длин векторов и их скалярного произведения. Воспользовавшись описанием, представленным выше, получим:

Подставив полученные значения в формулу, вычислим значение косинуса искомого угла:

Это число не является одним из пяти распространённых значений косинуса, поэтому для получения величины угла, придётся воспользоваться калькулятором или тригонометрической таблицей Брадиса. Но перед тем, как получить угол между векторами, формула может быть упрощена, чтобы избавиться от лишнего отрицательного знака:

Итоговый ответ для сохранения точности можно оставить в таком виде, а можно вычислить значение угла в градусах. По таблице Брадиса его величина составит примерно 116 градусов и 70 минут, а калькулятор покажет значение 116,57 градуса.

Вычисление угла в n-мерном пространстве

При рассмотрении двух векторов в трёхмерном пространстве, понять, о каком угле идёт речь гораздо сложнее, если они не лежат в одной плоскости. Для упрощения восприятия можно начертить два пересекающихся отрезка, которые образуют наименьший угол между ними, он и будет искомым. Несмотря на наличие третьей координаты в векторе, процесс того, как вычисляются углы между векторами, не изменится. Вычислите скалярное произведение и модули векторов, арккосинус их частного и будет являться ответом на данную задачу.

В геометрии нередко встречаются задачи и с пространствами, имеющими больше трёх измерений. Но и для них алгоритм нахождения ответа выглядит аналогично.

Разница между 0 и 180 градусами

Одна из распространённых ошибок при написании ответа на задачу, рассчитанную на то чтобы вычислить угол между векторами, - решение записать, что векторы параллельны, то есть искомый угол получился равен 0 или 180 градусам. Этот ответ является неверным.

Получив по итогам решения значение угла 0 градусов, правильным ответом будет обозначение векторов как сонаправленных, то есть у векторов будет совпадать направление. В случае получения 180 градусов векторы будут носить характер противоположно направленных.

Специфические векторы

Найдя углы между векторами, можно встретить один из особых типов, помимо описанных выше сонаправленных и противоположно направленных.

  • Несколько векторов параллельных одной плоскости называются компланарными.
  • Векторы, одинаковые по длине и направлению, называются равными.
  • Векторы, лежащие на одной прямой, независимо от направления, именуются коллинеарными.
  • Если длина вектора равна нулю, то есть его начало и конец совпадают, то его называют нулевым, а если единице, то единичным.

Инструкция

Пусть на плоскости заданы два ненулевых вектора, отложенные от одной точки: вектор A с координатами (x1, y1) B с координатами (x2, y2). Угол между ними обозначен как θ. Чтобы найти градусную меру угла θ необходимо воспользоваться определением скалярного произведения.

Скалярным произведением двух ненулевых называется число, равное произведению длин этих векторов на косинус угла между ними, то есть (A,B)=|A|*|B|*cos(θ). Теперь нужно выразить из данной косинус угла: cos(θ)=(A,B)/(|A|*|B|).

Скалярное произведение можно найти также по формуле (A,B)=x1*x2+y1*y2, так как произведение двух ненулевых векторов равно сумме произведений соответствующих этих векторов. Если скалярное произведение ненулевых векторов равно нулю, то векторы являются перпендикулярными (угол между ними равен 90 градусов) и дальнейшие вычисления можно не производить. Если скалярное произведение двух векторов положительно, то угол между этими векторами острый, а если отрицательно, то угол тупой.

Теперь посчитайте длины векторов A и B по формулам: |A|=√(x1²+y1²), |B|=√(x2²+y2²). Длина вектора вычисляется как квадратный корень из суммы квадратов его координат.

Найденные значения скалярного произведения и длин векторов подставьте в полученную в шаге 2 формулу для угла, то есть cos(θ)=(x1*x2+y1*y2)/(√(x1²+y1²)+√(x2²+y2²)). Теперь, зная значение , чтобы найти градусную меру угла между векторами нужно воспользоваться таблицей Брадиса или взять из этого : θ=arccos(cos(θ)).

Если векторы A и B заданы в трехмерном пространстве и имеют координаты (x1, y1, z1) и (x2, y2, z2) соответственно, то при нахождении косинуса угла добавляется еще одна координата. В этом случае косинус : cos(θ)=(x1*x2+y1*y2+z1*z2)/(√(x1²+y1²+z1²)+√(x2²+y2²+z2²)).

Полезный совет

Если два вектора отложены не от одной точки, то для нахождения угла между ними параллельным переносом нужно совместить начала этих векторов.
Угол между двумя векторами не может быть больше 180 градусов.

Источники:

  • как вычислить угол между векторами
  • Угол между прямой и плоскостью

Для решения многих задач, как прикладных, так и теоретических, в физике и линейной алгебре необходимо вычислять угол между векторами. Эта простая на первый взгляд задача способна доставить множество трудностей, если вы четко не усвоите сущность скалярного произведения и какая величина появляется в результате этого произведения.

Инструкция

Угол между векторами в векторном линейном пространстве – минимальный угол при , на который достигается сонаправленность векторов. Осуществляется одного из векторов вокруг его начальной точки. Из определения становится очевидно, что значение угла не может превышать 180 градусов (cм. к шагу).

При этом совершенно справедливо предполагается, что в линейном пространстве при осуществлении параллельного переноса векторов угол между ними не меняется. Поэтому для аналитического расчета угла пространственная ориентация векторов не имеет значения.

Результат скалярного произведения – число, иначе скаляр. Запомните (это важно знать), чтобы не допустить в дальнейших расчетах ошибок. Формула скалярного произведения, расположенных на плоскости либо в пространстве векторов, имеет вид (см. рисунок к шагу).

Если вектора располагаются в пространстве, то расчет производите аналогичным способом. Единственным будет появление слагаемого в делимом - это слагаемое за аппликату, т.е. третью компоненту вектора. Соответственно, при вычислении модуля векторов компоненту z также необходимо учесть, тогда для векторов, расположенных в пространстве, последнее выражение преобразуется следующим образом (см. рисунок 6 к шагу).

Вектор - это отрезок с заданным направлением. Угол между векторами имеет физическое значение, например при нахождении длины проекции вектора на ось.

Инструкция

Угол между двумя ненулевыми векторами с помощью вычисления скалярного произведения. По определению произведение равно произведению длин на угла между ними. С другой стороны, скалярное произведение для двух векторов a с координатами (x1; y1) и b с координатами (x2; y2) вычисляется : ab = x1x2 + y1y2. Из этих двух способов скалярного произведения легко угол между векторами.

Найдите длины или модули векторов. Для наших векторов a и b: |a| = (x1² + y1²)^1/2, |b| = (x2² + y2²)^1/2.

Найдите скалярное произведение векторов, перемножив их координаты попарно: ab = x1x2 + y1y2. Из определения скалярного произведения ab = |a|*|b|*cos α, где α - угол между векторами. Тогда получим, что x1x2 + y1y2 = |a|*|b|*cos α. Тогда cos α = (x1x2 + y1y2)/(|a|*|b|) = (x1x2 + y1y2)/((x1² + y1²)(x2² + y2²))^1/2.

Найдите угол α с помощью таблиц Брадиса.

Видео по теме

Обратите внимание

Скалярное произведение - это скалярная характеристика длин векторов и угла между ними.

Плоскость – одно их исходных понятий в геометрии. Плоскостью называется поверхность, для которой верно утверждение - любая прямая, соединяющая две ее точки, целиком принадлежит этой поверхности. Плоскости принято обозначать греческими буквами α, β, γ и т.д. Две плоскости всегда пересекаются по прямой линии, которая принадлежит обеим плоскостям.

Инструкция

Рассмотрим полуплоскости α и β образованные при пересечении . Угол, образованный прямой a и двумя полуплоскостями α и β двугранным углом. При этом полуплоскости образующие двугранный угол гранями, прямая a по которой пересекаются плоскости называется ребром двугранного угла.

Двугранный угол, как и плоский угол, в градусах. Чтобы двугранный угол необходимо на его грани выбрать произвольную точку O. В обеих через точку O проводятся два луча a. Образованный угол AOB называется линейным углом двугранного угла a.

Итак, пусть задан вектор V = (а, b, с) и плоскость А x + В y + C z = 0, где А, В и C – координаты нормали N. Тогда косинус угла α между векторами V и N равен:сos α = (а А + b В + с C)/(√(а² + b² + с²) √(А² + В² + C²)).

Чтобы вычислить величину угла в градусах или радианах, нужно от получившегося выражения рассчитать функцию, обратную к косинусу, т.е. арккосинус:α = аrссos ((а А + b В + с C)/(√(а² + b² + с²) √(А² + В² + C²))).

Пример: найдите угол между вектором (5, -3, 8) и плоскостью , заданной общим уравнением 2 x – 5 y + 3 z = 0.Решение: выпишите координаты нормального вектора плоскости N = (2, -5, 3). Подставьте все известные значения в приведенную формулу:сos α = (10 + 15 + 24)/√3724 ≈ 0,8 → α = 36,87°.

Видео по теме

Составьте равенство и вычлените из него косинус. По одной формуле скалярное произведение векторов равно их длинам, перемноженным друг на дружку и на косинус угла , а по другой - сумме произведений координат вдоль каждой из осей. Приравняв обе формулы можно сделать вывод, что косинус угла должен быть равен отношению суммы произведений координат к произведению длин векторов.

Запишите полученное равенство. Для этого надо обозначить обоих векторов. Допустим, они даны в трехмерной декартовой системе и их начальные точки в координатной сетки. Направление и величина первого вектора будет задана точкой (X₁,Y₁,Z₁), второго - (X₂,Y₂,Z₂), а угол обозначьте буквой γ. Тогда длины каждого из векторов можно , например, по теореме Пифагора для , образуемых их проекциями на каждую из координатных осей: √(X₁² + Y₁² + Z₁²) и √(X₂² + Y₂² + Z₂²). Подставьте эти выражения в сформулированную на предыдущем шаге формулу и вы получите равенство: cos(γ) = (X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √(X₂² + Y₂² + Z₂²)).

Используйте тот факт, что сумма возведенных в квадрат синуса и косинуса от угла одной величины всегда дает единицу. Значит, возведя полученное на предыдущем шаге для косинуса в квадрат и отняв от единицы, а затем

Скалярное произведение векторов

Продолжаем разбираться с векторами. На первом уроке Векторы для чайников мы рассмотрели понятие вектора, действия с векторами, координаты вектора и простейшие задачи с векторами. Если вы зашли на эту страничку впервые с поисковика, настоятельно рекомендую прочитать вышеуказанную вводную статью, поскольку для усвоения материала необходимо ориентироваться в используемых мной терминах, обозначениях, обладать базовыми знаниями о векторах и уметь решать элементарные задачи. Данный урок является логическим продолжением темы, и на нём я подробно разберу типовые задания, в которых используется скалярное произведение векторов. Это ОЧЕНЬ ВАЖНОЕ занятие . Постарайтесь не пропускать примеры, к ним прилагается полезный бонус – практика поможет вам закрепить пройденный материал и «набить руку» на решении распространенных задач аналитической геометрии.

Сложение векторов, умножение вектора на число…. Было бы наивным думать, что математики не придумали что-нибудь ещё. Помимо уже рассмотренных действий, существует ряд других операций с векторами, а именно: скалярное произведение векторов , векторное произведение векторов и смешанное произведение векторов . Скалярное произведение векторов знакомо нам со школы, два других произведения традиционно относятся к курсу высшей математики. Темы несложные, алгоритм решения многих задач трафаретен и понятен. Единственное. Информации прилично, поэтому нежелательно пытаться освоить-прорешать ВСЁ И СРАЗУ. Особенно это касается чайников, поверьте, автор совершенно не хочет чувствовать себя Чикатило от математики. Ну и не от математики, конечно, тоже =) Более подготовленные студенты могут использовать материалы выборочно, в известном смысле, «добирать» недостающие знания, для вас я буду безобидным графом Дракулой =)

Приоткроем же, наконец, дверь и увлечённо посмотрим, что происходит, когда два вектора встречают друг друга….

Определение скалярного произведения векторов.
Свойства скалярного произведения. Типовые задачи

Понятие скалярного произведения

Сначала про угол между векторами . Думаю, всем интуитивно понятно, что такое угол между векторами, но на всякий случай чуть подробнее. Рассмотрим свободные ненулевые векторы и . Если отложить данные векторы от произвольной точки , то получится картинка, которую многие уже представили мысленно:

Признаюсь, здесь я обрисовал ситуацию только на уровне понимания. Если необходимо строгое определение угла между векторами, пожалуйста, обратитесь к учебнику, для практических же задач оно нам, в принципе, ни к чему. Также ЗДЕСЬ И ДАЛЕЕ я буду местами игнорировать нулевые векторы ввиду их малой практической значимости. Оговорку сделал специально для продвинутых посетителей сайта, которые могут меня упрекнуть в теоретической неполноте некоторых последующих утверждений.

может принимать значения от 0 до 180 градусов (от 0 до радиан) включительно. Аналитически данный факт записывается в виде двойного неравенства: либо (в радианах).

В литературе значок угла часто пропускают и пишут просто .

Определение: Скалярным произведением двух векторов и называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними:

Вот это вот уже вполне строгое определение.

Акцентируем внимание на существенной информации:

Обозначение: скалярное произведение обозначается через или просто .

Результат операции является ЧИСЛОМ : Умножается вектор на вектор, а получается число. Действительно, если длины векторов – это числа, косинус угла – число, то их произведение тоже будет числом.

Сразу пара разминочных примеров:

Пример 1

Решение: Используем формулу . В данном случае:

Ответ:

Значения косинуса можно найти в тригонометрической таблице . Рекомендую её распечатать – потребуется практически во всех разделах вышки и потребуется много раз.

Чисто с математической точки зрения скалярное произведение безразмерно, то есть результат, в данном случае , просто число и всё. С точки же зрения задач физики скалярное произведение всегда имеет определенный физический смысл, то есть после результата нужно указать ту или иную физическую единицу. Канонический пример по вычислению работы силы можно найти в любом учебнике (формула в точности представляет собой скалярное произведение). Работа силы измеряется в Джоулях, поэтому, и ответ запишется вполне конкретно, например, .

Пример 2

Найти , если , а угол между векторами равен .

Это пример для самостоятельного решения, ответ в конце урока.

Угол между векторами и значение скалярного произведения

В Примере 1 скалярное произведение получилось положительным, а в Примере 2 – отрицательным. Выясним, от чего зависит знак скалярного произведения. Смотрим на нашу формулу: . Длины ненулевых векторов всегда положительны: , поэтому знак может зависеть только от значения косинуса.

Примечание: Для более качественного понимания нижеприведенной информации лучше изучить график косинуса в методичке Графики и свойства функции . Посмотрите, как ведёт себя косинус на отрезке .

Как уже отмечалось, угол между векторами может изменяться в пределах , и при этом возможны следующие случаи:

1) Если угол между векторами острый : (от 0 до 90 градусов), то , и скалярное произведение будет положительным сонаправлены , то угол между ними считается нулевым , и скалярное произведение также будет положительным. Поскольку , то формула упрощается: .

2) Если угол между векторами тупой : (от 90 до 180 градусов), то , и, соответственно, скалярное произведение отрицательно : . Особый случай: если векторы направлены противоположно , то угол между ними считается развёрнутым : (180 градусов). Скалярное произведение тоже отрицательно, так как

Справедливы и обратные утверждения:

1) Если , то угол между данными векторами острый. Как вариант, векторы сонаправлены.

2) Если , то угол между данными векторами тупой. Как вариант, векторы направлены противоположно.

Но особый интерес представляет третий случай:

3) Если угол между векторами прямой : (90 градусов), то и скалярное произведение равно нулю : . Обратное тоже верно: если , то . Компактно утверждение формулируется так: Скалярное произведение двух векторов равно нулю тогда и только тогда, когда данные векторы ортогональны . Короткая математическая запись:

! Примечание : повторим основы математической логики : двусторонний значок логического следствия обычно читают «тогда и только тогда», «в том и только в том случае». Как видите, стрелки направлены в обе стороны – «из этого следует это, и обратно – из того, следует это». В чём, кстати, отличие от одностороннего значка следования ? Значок утверждает, только то , что «из этого следует это», и не факт, что обратное справедливо. Например: , но не каждый зверь является пантерой, поэтому в данном случае нельзя использовать значок . В то же время, вместо значка можно использовать односторонний значок. Например, решая задачу, мы выяснили, что и сделали вывод, что векторы ортогональны: – такая запись будет корректной, и даже более уместной, чем .

Третий случай имеет большую практическую значимость , поскольку позволяет проверить, ортогональны векторы или нет. Данную задачу мы решим во втором разделе урока.


Свойства скалярного произведения

Вернёмся к ситуации, когда два вектора сонаправлены . В этом случае угол между ними равен нулю, , и формула скалярного произведения принимает вид: .

А что будет, если вектор умножить на самого себя? Понятно, что вектор сонаправлен сам с собой, поэтому пользуемся вышеуказанной упрощенной формулой:

Число называется скалярным квадратом вектора , и обозначатся как .

Таким образом, скалярный квадрат вектора равен квадрату длины данного вектора:

Из данного равенства можно получить формулу для вычисления длины вектора:

Пока она кажется малопонятной, но задачи урока всё расставят на свои места. Для решения задач нам также потребуются свойства скалярного произведения .

Для произвольных векторов и любого числа справедливы следующие свойства:

1) – переместительный или коммутативный закон скалярного произведения.

2) – распределительный или дистрибутивный закон скалярного произведения. Попросту, можно раскрывать скобки.

3) – сочетательный или ассоциативный закон скалярного произведения. Константу можно вынести из скалярного произведения.

Зачастую, всевозможные свойства (которые ещё и доказывать надо!) воспринимаются студентами как ненужный хлам, который лишь необходимо вызубрить и сразу после экзамена благополучно забыть. Казалось бы, чего тут важного, все и так с первого класса знают, что от перестановки множителей произведение не меняется: . Должен предостеречь, в высшей математике с подобным подходом легко наломать дров. Так, например, переместительное свойство не является справедливым для алгебраических матриц . Неверно оно и для векторного произведения векторов . Поэтому, в любые свойства, которые вам встретятся в курсе высшей математики, как минимум, лучше вникать, чтобы понять, что можно делать, а чего нельзя.

Пример 3

.

Решение: Сначала проясним ситуацию с вектором . Что это вообще такое? Сумма векторов и представляет собой вполне определенный вектор, который и обозначен через . Геометрическую интерпретацию действий с векторами можно найти в статье Векторы для чайников . Та же петрушка с вектором – это сумма векторов и .

Итак, по условию требуется найти скалярное произведение . По идее, нужно применить рабочую формулу , но беда в том, что нам неизвестны длины векторов и угол между ними. Зато в условии даны аналогичные параметры для векторов , поэтому мы пойдём другим путём:

(1) Подставляем выражения векторов .

(2) Раскрываем скобки по правилу умножения многочленов, пошлую скороговорку можно найти в статье Комплексные числа или Интегрирование дробно-рациональной функции . Повторяться уж не буду =) Кстати, раскрыть скобки нам позволяет дистрибутивное свойство скалярного произведения. Имеем право.

(3) В первом и последнем слагаемом компактно записываем скалярные квадраты векторов: . Во втором слагаемом используем перестановочность скалярного произведения: .

(4) Приводим подобные слагаемые: .

(5) В первом слагаемом используем формулу скалярного квадрата , о которой не так давно упоминалось. В последнем слагаемом, соответственно, работает та же штука: . Второе слагаемое раскладываем по стандартной формуле .

(6) Подставляем данные условия , и ВНИМАТЕЛЬНО проводим окончательные вычисления.

Ответ:

Отрицательное значение скалярного произведения констатирует тот факт, что угол между векторами является тупым.

Задача типовая, вот пример для самостоятельного решения:

Пример 4

Найти скалярное произведение векторов и , если известно, что .

Теперь ещё одно распространённое задание, как раз на новую формулу длины вектора . Обозначения тут будут немного совпадать, поэтому для ясности я перепишу её с другой буквой:

Пример 5

Найти длину вектора , если .

Решение будет следующим:

(1) Поставляем выражение вектора .

(2) Используем формулу длины: , при этом в качестве вектора «вэ» у нас выступает целое выражение .

(3) Используем школьную формулу квадрата суммы . Обратите внимание, как она здесь любопытно работает: – фактически это квадрат разности, и, по сути, так оно и есть. Желающие могут переставить векторы местами: – получилось то же самое с точностью до перестановки слагаемых.

(4) Дальнейшее уже знакомо из двух предыдущих задач.

Ответ:

Коль скоро речь идёт о длине, не забываем указать размерность – «единицы».

Пример 6

Найти длину вектора , если .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Продолжаем выжимать полезные вещи из скалярного произведения. Снова посмотрим на нашу формулу . По правилу пропорции сбросим длины векторов в знаменатель левой части:

А части поменяем местами:

В чём смысл данной формулы? Если известны длины двух векторов и их скалярное произведение, то можно вычислить косинус угла между данными векторами, а, следовательно, и сам угол.

Скалярное произведение – это число? Число. Длины векторов – числа? Числа. Значит, дробь тоже является некоторым числом . А если известен косинус угла: , то с помощью обратной функции легко найти и сам угол: .

Пример 7

Найти угол между векторами и , если известно, что .

Решение: Используем формулу:

На заключительном этапе вычислений использован технический приём – устранение иррациональности в знаменателе. В целях устранения иррациональности я домножил числитель и знаменатель на .

Итак, если , то:

Значения обратных тригонометрических функций можно находить по тригонометрической таблице . Хотя случается это редко. В задачах аналитической геометрии значительно чаще появляется какой-нибудь неповоротливый медведь вроде , и значение угла приходится находить приближенно, используя калькулятор. Собственно, такую картину мы ещё неоднократно увидим.

Ответ:

Опять, не забываем указывать размерность – радианы и градусы. Лично я, чтобы заведомо «снять все вопросы», предпочитаю указывать и то, и то (если по условию, конечно, не требуется представить ответ только в радианах или только в градусах).

Теперь вы сможете самостоятельно справиться с более сложным заданием:

Пример 7*

Даны – длины векторов , и угол между ними . Найти угол между векторами , .

Задание даже не столько сложное, сколько многоходовое.
Разберём алгоритм решения:

1) По условию требуется найти угол между векторами и , поэтому нужно использовать формулу .

2) Находим скалярное произведение (см. Примеры № 3, 4).

3) Находим длину вектора и длину вектора (см. Примеры № 5, 6).

4) Концовка решения совпадает с Примером № 7 – нам известно число , а значит, легко найти и сам угол:

Краткое решение и ответ в конце урока.

Второй раздел урока посвящен тому же скалярному произведению. Координаты. Будет даже проще, чем в первой части.

Скалярное произведение векторов,
заданных координатами в ортонормированном базисе

Ответ:

Что и говорить, иметь дело с координатами значительно приятнее.

Пример 14

Найти скалярное произведение векторов и , если

Это пример для самостоятельного решения. Здесь можно использовать ассоциативность операции, то есть не считать , а сразу вынести тройку за пределы скалярного произведения и домножить на неё в последнюю очередь. Решение и ответ в конце урока.

В заключение параграфа провокационный пример на вычисление длины вектора:

Пример 15

Найти длины векторов , если

Решение: снова напрашивается способ предыдущего раздела: , но существует и другая дорога:

Найдём вектор :

И его длину по тривиальной формуле :

Скалярное произведение здесь вообще не при делах!

Как не при делах оно и при вычислении длины вектора :
Стоп. А не воспользоваться ли очевидным свойством длины вектора? Что можно сказать о длине вектора ? Данный вектор длиннее вектора в 5 раз. Направление противоположно, но это не играет роли, ведь разговор о длине. Очевидно, что длина вектора равна произведению модуля числа на длину вектора :
– знак модуля «съедает» возможный минус числа .

Таким образом:

Ответ:

Формула косинуса угла между векторами, которые заданы координатами

Теперь у нас есть полная информация, чтобы ранее выведенную формулу косинуса угла между векторами выразить через координаты векторов :

Косинус угла между векторами плоскости и , заданными в ортонормированном базисе , выражается формулой :
.

Косинус угла между векторами пространства , заданными в ортонормированном базисе , выражается формулой :

Пример 16

Даны три вершины треугольника . Найти (угол при вершине ).

Решение: По условию чертёж выполнять не требуется, но всё-таки:

Требуемый угол помечен зелёной дугой. Сразу вспоминаем школьное обозначение угла: – особое внимание на среднюю букву – это и есть нужная нам вершина угла. Для краткости можно было также записать просто .

Из чертежа совершенно очевидно, что угол треугольника совпадает с углом между векторами и , иными словами: .

Проведённый анализ желательно научиться выполнять мысленно.

Найдём векторы:

Вычислим скалярное произведение:

И длины векторов:

Косинус угла:

Именно такой порядок выполнения задания рекомендую чайникам. Более подготовленные читатели могут записывать вычисления «одной строкой»:

Вот и пример «плохого» значения косинуса. Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

Найдём сам угол:

Если посмотреть на чертёж, то результат вполне правдоподобен. Для проверки угол также можно измерить и транспортиром. Не повредите покрытие монитора =)

Ответ:

В ответе не забываем, что спрашивалось про угол треугольника (а не про угол между векторами), не забываем указать точный ответ: и приближенное значение угла: , найденное с помощью калькулятора.

Те, кто получил удовольствие от процесса, могут вычислить углы , и убедиться в справедливости канонического равенства

Пример 17

В пространстве задан треугольник координатами своих вершин . Найти угол между сторонами и

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Небольшой заключительный раздел будет посвящен проекциям, в которых тоже «замешано» скалярное произведение:

Проекция вектора на вектор. Проекция вектора на координатные оси.
Направляющие косинусы вектора

Рассмотрим векторы и :

Спроецируем вектор на вектор , для этого из начала и конца вектора опустим перпендикуляры на вектор (зелёные пунктирные линии). Представьте, что на вектор перпендикулярно падают лучи света. Тогда отрезок (красная линия) будет «тенью» вектора . В данном случае проекцией вектора на вектор является ДЛИНА отрезка . То есть, ПРОЕКЦИЯ – ЭТО ЧИСЛО.

Данное ЧИСЛО обозначается следующим образом: , «большим вектором» обозначают вектор КОТОРЫЙ проецируют, «маленьким подстрочным вектором» обозначают вектор НА который проецируют.

Сама запись читается так: «проекция вектора «а» на вектор «бэ»».

Что произойдёт, если вектор «бэ» будет «слишком коротким»? Проводим прямую линию, содержащую вектор «бэ». И вектор «а» будет проецироваться уже на направление вектора «бэ» , попросту – на прямую, содержащую вектор «бэ». То же самое произойдёт, если вектор «а» отложить в тридесятом царстве – он всё равно легко спроецируется на прямую, содержащую вектор «бэ».

Если угол между векторами острый (как на рисунке), то

Если векторы ортогональны , то (проекцией является точка, размеры которой считаются нулевыми).

Если угол между векторами тупой (на рисунке мысленно переставьте стрелочку вектора ), то (та же длина, но взятая со знаком минус).

Отложим данные векторы от одной точки:

Очевидно, что при перемещении вектора его проекция не меняется

«Скалярное произведение вектора» - Скалярное произведение векторов. В равностороннем треугольнике АВС со стороной 1 проведена высота BD. По определению, Охарактеризуйте угол? между векторами и, если: а) б) в) г). При каком значении t вектор перпендикулярен вектору, если (2, -1), (4, 3). Скалярное произведение векторов и обозначается.

«Геометрия 9 класс «Векторы»» - Расстояние между двумя точками. Простейшие задачи в координатах. Проверь себя! Координаты вектора. В 1903 году О.Хенричи предложил обозначать скалярное произведение символом (а,в). Вектор - направленный отрезок. Разложение вектора по координатным векторам. Понятие вектора. Разложение вектора на плоскости по двум неколлинеарным векторам.

«Вектор решение задач» - Выразить векторы AM, DA, CA, MB, CD через вектор a и вектор b. № 2 Выразить векторы DP, DM, AC через векторы а и b. СР: PD = 2: 3; AK: KD = 1: 2. Выразить векторы СК, РК через векторы а и b. BE: EC = 3: 1. K – середина DC. ВK: KС = 3: 4. Выразить векторы АК, DК через векторы а и b. Применение векторов к решению задач (ч.1).

«Задачи на векторы» - Теорема. Найдите координаты. Даны три точки. Вершины треугольника. Найдите координаты векторов. Найдите координаты точки. Найдите координаты и длину вектора. Выразите длину вектора. Координаты вектора. Координаты векторов. Найдите координаты вектора. Даны векторы. Назовите координаты векторов. Вектор имеет координаты.

«Метод координат на плоскости» - Проведена окружность. Перпендикуляры. Координатная ось. Значение синуса. Прямоугольная система координат на плоскости. Найдите координаты вершины. Рассмотрим пример. Решение данной задачи. На плоскости даны точки. Вершины параллелограмма. Разложите векторы. Вычислить. Множество точек. Решить графически систему уравнений.

«Сложение и вычитание векторов» - 1. Цели урока. 2. Основная часть. Твой самый, самый лучший друг Лунатик! Узнать способы вычитания векторов. 2. Укажите вектор суммы векторов a и b. Друг мой!! Посмотрим,что тут у нас. Наши цели: Заключение. 3. Отзыв руководителя. 4. Список литературы. Путешествие с Лунатиком. От точки А отложим оба вектора.

Всего в теме 29 презентаций