Плотность потока излучения формула. Плотность потока электромагнитного излучения


Излученные электромагнитные волны несут с собой энергию. Излученные электромагнитные волны несут с собой энергию. Энергетические характеристики излучения играют важную роль, так как определяют воздействия источников излучения на его приемники. Энергетические характеристики излучения играют важную роль, так как определяют воздействия источников излучения на его приемники. Одной из главных характеристик излучения является плотность потока электромагнитного излучения. Одной из главных характеристик излучения является плотность потока электромагнитного излучения.


Рассмотрим поверхность площадью S, через которую эл/м волны переносят энергию. Лучи указывают распространение эл/м волн. Лучи указывают распространение эл/м волн. Они перпендикулярны поверхностям, во всех точках которых колебания происходят в одинаковых фазах, эти поверхности называются волновыми. Они перпендикулярны поверхностям, во всех точках которых колебания происходят в одинаковых фазах, эти поверхности называются волновыми.


Плотностью потока эл/м излучения I называется отношение эл/м энергии, проходящей за время через перпендикулярную лучам поверхность площадью S, к произведению площади S на время. I = Плотностью потока эл/м излучения I называется отношение эл/м энергии, проходящей за время через перпендикулярную лучам поверхность площадью S, к произведению площади S на время. I =


Фактически – это мощность эл/м излучения, то есть энергия в единицу времени, проходящего через единицу площади поверхности. Фактически – это мощность эл/м излучения, то есть энергия в единицу времени, проходящего через единицу площади поверхности. В системе СИ плотность потока выражают ВТ/м 2. В системе СИ плотность потока выражают ВТ/м 2. Иногда эту величину называют – интенсивность волны. Иногда эту величину называют – интенсивность волны.




W = ω c t S W = ω c t S I= = ω · c I= = ω · c Плотность потока излучения равна произведению плотности эл/м энергии на скорость ее распространения. Плотность потока излучения равна произведению плотности эл/м энергии на скорость ее распространения. V = S c t V = S c t


Зависимость плотности потока излучения от расстояния до источника Энергия, которую несут с собой эл/м волны, с течением времени распределяется по все большей и большей поверхности (сфере). Энергия, которую несут с собой эл/м волны, с течением времени распределяется по все большей и большей поверхности (сфере). Поэтому плотность потока излучения уменьшается по мере удаления от источника. Поэтому плотность потока излучения уменьшается по мере удаления от источника.


I = = Площадь поверхности сферы Площадь поверхности сферы Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника. Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.


Зависимость плотности потока излучения от частоты Излучение эл/м волн происходит при ускоренном движении заряженных частиц. Излучение эл/м волн происходит при ускоренном движении заряженных частиц. Е ~ а ~ ω 2 Е ~ а ~ ω 2 В ~ a ~ ω 2 I ~ ω 4 В ~ a ~ ω 2 I ~ ω 4 I ~ ω ~ (E 2 + B 2) I ~ ω ~ (E 2 + B 2) Плотность потока излучения пропорциональна четвертой степени частоты. Плотность потока излучения пропорциональна четвертой степени частоты.

Электромагнитные волны переносят энергию из одних участков пространства в другие. Перенос энергии осуществляется вдоль лучей — воображаемых линий, указывающих направление распространения волны. Важнейшей энергетической характеристикой электромагнитных волн служит плотность потока излучения. Представим себе площадку площадью S, расположенную перпендикулярно лучам. Допустим, что за время t волна переносит через эту площадку энергию W. Иначе говоря, плотность потока излучения — это энергия, переносимая через единичную площадку (перпендикулярную лучам) в единицу времени; или, что то же самое — это мощность излучения, переносимая через единичную площадку. Единицей измерения плотности потока излучения служит Вт/м2. Плотность потока излучения связана простым соотношением с плотностью энергии элек¬тромагнитного поля. Фиксируем площадку S, перпендикулярную лучам, и небольшой промежуток времени t. Сквозь площадку пройдёт энергия: W = ISt. Эта энергия будет сосредоточена в цилиндре с площадью основания S и высотой ct, где c — скорость электромагнитной волны.Объём данного цилиндра равен: V = Sct. Поэтому если w — плотность энергии электромагнитного поля, то для энергии W получим также: W = wV = wSct. Приравнивая правые части формул и и сокращая на St, получим соотношение: I = wc. Плотность потока излучения характеризует, в частности, степень воздействия электромаг¬нитного излучения на его приёмники; когда говорят об интенсивности электромагнитных волн, имеют в виду именно плотность потока излучения. Интересным является вопрос о том, как интенсивность излучения зависит от его частоты. Пусть электромагнитная волна излучается зарядом, совершающим гармонические колебания вдоль оси X по закону x = x0 sin iet. Циклическая частота ш колебаний заряда будет в то же время циклической частотой излучаемой электромагнитной волны. Для скорости и ускорения заряда имеем: v = X = x0ш cos шt и а = v = -x0ш2 sin шt. Как видим, а ~ ш2. Напряжённость электрического поля и индукция магнитного поля в электро¬магнитной волне пропорциональны ускорению заряда: E ~ а и B ~ а. Стало быть, E ~ ш2 и B ~ ш2. Плотность энергии электромагнитного поля есть сумма плотности энергии электрического поля и плотности энергии магнитного поля: w = wэл + wMarH. Плотность энергии электрического поля, как мы знаем, пропорциональна квадрату напряжённости поля: w^ ~ E2. Аналогично можно показать, что wMarH ~ B2. Следовательно, w^ ~ ш4 и wMarH ~ ш4, так что w ~ ш4. Согласно формуле плотность потока излучения пропорциональна плотности энергии: I ~ w. Поэтому I ~ шА. Мы получили важный результат: интенсивность электромагнитного излучения пропорциональна четвёртой степени его частоты. Другой важный результат заключается в том, что интенсивность излучения убывает с увеличением расстояния до источника. Это понятно: ведь источник излучает в разных направ¬лениях, и по мере удаления от источника излучённая энергия распределяется по всё большей и большей площади. Количественную зависимость плотности потока излучения от расстояния до источника легко получить для так называемого точечного источника излучения. Точечный источник излучения — это источник, размерами которого в условиях данной ситуации можно пренебречь. Кроме того, считается, что точечный источник одинаково излучает во всех направлениях. Конечно, точечный источник является идеализацией, но в некоторых задачах эта идеализа¬ция отлично работает. Например, при исследовании излучения звёзд их вполне можно считать точечными источниками — ведь расстояния до звёзд настолько громадны, что их собственные размеры можно не принимать во внимание. На расстоянии r от источника излучённая энергия равномерно распределяется по поверхно¬сти сферы радиуса г. Площадь сферы, напомним, S = 4nr2. Если мощность излучения нашего источника равна P, то за время t через поверхность сферы проходит энергия W = Pt. С помощью формулы получаем тогда: = Pt = P 4 nr2t 4 nr2 Таким образом, интенсивность излучения точечного источника обратно пропорциональна расстоянию до него. Виды электромагнитных излучений Спектр электромагнитных волн необычайно широк: длина волны может измеряться тысячами километров, а может быть меньше пикометра. Тем не менее, весь этот спектр можно разделить на несколько характерных диапазонов длин волн; внутри каждого диапазона электромагнитные волны обладают более-менее схожими свойствами и способами излучения.

Теперь перейдем к рассмотрению свойств и характеристик электромагнитных волн. Одной из характеристик электромагнитных волн является плотность электромагнитного излучения.

Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.

Плотностью потока электромагнитного излучения I называет отношение электромагнитной энергии W , проходящей за время t через перпендикулярную лучам поверхность площадью S, к произведению площади S на время t.

Плотность потока излучения, в СИ выражают в ваттах на квадратный метр (Вт/м 2). Иногда эту величину называют интенсивностью волны.

После проведения ряда преобразований мы получаем что I = w c.

т. е. плотность потока излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Мы не раз встречались с идеализацией реальных источников принятие в физике: материальная точка, идеальный газ и т. д. Здесь мы встретимся еще с одним.

Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью.

Рассмотрим зависимость плотности потока излучения от расстояния до источника.

Энергия, которую несут с собой электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, переносимая через единичную площадку за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника. Выяснить зависимость плотности потока излучения от расстояния до источника можно, поместив точечный источник в центр сферы радиусом R. площадь поверхности сферы S= 4 п R^2. Если считать, что источник по всем направлениям за время t излучает энергию W

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Теперь рассмотрим зависимость плотности потока излучения от частоты. Как известно излучение электромагнитных волн происходит при ускоренном движении заряженных частиц. Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению а излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция пропорциональны квадрату частоты

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения пропорциональна: (E^2+B^2). От сюда получаем, что I пропорциональна w^4.

Плотностью потока электромагнитного излучения / называют отношение электромагнитной энергии W, проходящей за время t через перпендикулярную лучам поверхность площадью S, к произведению площади S на время t:

Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м 2). Иногда эту величину называют интенсивностью волны.

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей c t (рис. 7.6). Объем цилиндра V=Sc t. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: W = c tS. Вся эта энергия за время t пройдет через правое основание цилиндра. Поэтому из формулы (7.1) получаем

т. е. плотность потока излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Найдем зависимость плотности потока излучения от расстояния до источника. Для этого надо ввести еще одно новое понятие.

Зависимость плотности потока излучения от расстояния до точечного источника. Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4 R 2 . Если считать, что источник по всем направлениям за время t излучает суммарную энергию W, то

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц (см. § 48). Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. С учетом формулы (7.2) плотность потока излучения

Плотность потока излучения пропорциональна четвертой степени частоты.

ПОЙНТИНГА ВЕКТОР - вектор плотности потока энергии эл--магн. поля (в системе СГС), где Е и Н - напряжённости электрич. и магн. полей. П. в. по модулю равен кол-ву энергии, переносимой через единичную площадь, перпендикулярную к S , в единицу времени. Поскольку тангенциальные к границе раздела двух сред компоненты Е и Н непрерывны, вектор S непрерывен на границе двух сред. Плотность кол-ва движения эл--магн. поля определяется вектором S /c 2 . В этом соотношении проявляется материальность эл--магн. поля. П. в. входит в состав тензора плотности энергии-импульса электромагнитного поля . Понятие П. в. было введено в теореме Пой-нтинга через 10 лет после общей формулировки Н. А. Умовым (1874) понятия потока энергии в среде, поэтому П. в. в литературе часто называют вектором Умова - Пойнтинга.

Общим для всех волн (независимо от их природы) является то, что при их распространении осуществляется перенос энергии без переноса вещества.

Энергия, переносимая э/м волной складывается из энергии электрических и магнитных полей.

Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей электриче­ского и магнитного полей: (4.1)

Учитывая выражение (3.5), получим, что плотность энергии электрического и магнитного полей в каждый момент вре­мени одинакова, т.е. = . Поэтому (4.2)

Умножив плотность энергии w на скорость v распространения волны в среде, получим модуль плотности потока энергии: (4.3)

Так как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора[ЕН] совпадает с направлением переноса энер­гии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнит­ной энергии называетсявектором Умова- Пойнтинга: S=. (4.4)

Вектор S направлен в сторону рас­пространения э/м волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу вре­мени через единичную площадку, перпен­дикулярную направлению распростране­ния волны.

Интенсивность связана с вектором Пойнтинга соотношением:


Плотность потока излучения может изменяться по определенным направлениям излучения. Количество энергия, испускаемое в направлении /, определяемом углом ty с нормалью к поверхности п (рис. 16.1) единицей элементарной площадки в единицу времени в пределах единичного элементарного телесного угла 4о, называется угловой плотностью излучения.  

Плотность потока излучения может изменяться по определенным направлениям излучения. Количество энергии, испускаемое в определенном напр-авлении /, определяемым углом г ] с нормалью к поверхности п (рис. 16 - 1) единицей элементарной площадки в единицу времени в пределах элементарного телесного угла do, называется угловой плотностью излучения.  

Плотность потока излучения пропорциональна четвертой степени частоты.  

Плотность потока излучения Е является интегральной характеристикой, относящейся ко всему диапазону длин волн. Спектральная плотность потока излучения EI dE / dhB характеризует распределение энергии излучения по длинам волн.  

Плотность потока излучения, падающего на экран, Е (интенсивность освещенности или просто освещенность) изменяется вследствие отклонения лучей.  

Плотность потока излучения определяется прямым и отраженным потоками. Величина отраженного потока зависит от расстояния между источником и отражающими поверхностями.  

Плотность потока излучения - количество энергии излучения, проходящее в единицу времени через единицу площади поверхности в пределах полусферического телесного угла.  

Плотность потока излучения зависит от угла падения волн на поверхность тела, так как с увеличением угла падения тот же поток излучения распределяется на все большую поверхность.  


Плотность потока излучения газа в целом складывается из плотностей потоков излучения всех полос его спектра.  

Плотность потока излучения лазерного луча характеризуется отношением общей выходной мощности к площади пятна нагрева в фокусе. Рост плотности потока до 105 - 106 Вт / см2 и распределение его по пятну нагрева диаметром 0 25 - 0 5 мм приводит к получению узкого канала в жидкой фазе, через который излучение проникает в глубь объема разрезаемого материала. Присутствие этой фазы в продуктах разрушения является особенностью лазерной обработки металлов. Она представляется достаточно сложной и должна быть построена с учетом тепловых и гидродинамических явлений.  

Ефо - плотность потока излучения, соответствующая углу ф; dQ - элементарный телесный угол, под которым из данной точки излучающего тела видна элементарная площадка на поверхности полусферы, имеющей центр в этой точке; ф - угол между нормалью к излучающей поверхности и направлением излучения. Для реальных тел закон Ламберта выполняется лишь приближенно.  

Фнат - плотность потока излучения натекания, попавшего в точку детектирования после прохождения хотя бы части своего первоначального пути через защиту. При таком рассмотрении не учитываются частицы или кванты, траекторию рассеяния которых можно условно обозначить так: источник - заполнитель - защита - заполнитель - детектор. Это означает, что материал защиты можно считать абсолютно черным телом для излучения, попавшего в него из заполнителя.  

С понятием плотности потока излучения не связано никакое представление о направлении излучения, вследствие чего эта величина предназначена для характеристики равноярких излучателей по любому направлению.