Титан - металл. Свойства титана. Применение титана. Марки и химический состав титана. Титан (Titanium) - это

Инструкция

Открытие титана знаменательно тем, что его «родителями» являются сразу двое ученых – британец У. Грегор и немец М. Клапрот. Первый еще в 1791 году проводил исследования состава магнитного железистого песка, в результате чего был выделен неизвестный до этого момента металл. А в 1795-ом Клапрот проводил научные изыскания в части минерала рутила и также получил какой-то металл. Спустя десять лет уже француз Л. Воклен сам получил титан и доказал то, что предыдущие металлы были идентичны.

Полноценный образец химического элемента был получен ученым Й. Я. Берцелиусом в 1825 году, но он тогда считался сильно загрязненным, а уже чистый титан смогли получить двое голландцев – А. ванн Аркел и И. де Бур.

Титан является 10-ым по концентрации в природе химическим элементом среди всей периодической таблицы. Он есть в земной коре, морской воде, ультраосновных породах, в глинистой почве и в сланцах. Переносится элемент путем выветривания, после чего образуются крупные концентрации титана в россыпях. Минералы, содержащие в себе этот химический элемент – рутил, ильменит, титаномагнетит, перовскит, титанит, также различаются коренные титановые руды. Лидером по добыче элемента считаются Китай и Россия, но его запасы также есть в Украине, Японии, Австралии, Казахстане, в Южной Корее, Индии, Бразилии и на Цейлоне. В 2013 году мировое производство титана составило 4,5 млн тонн.

Плавится титан при температуре в 1660 градусов Цельсия, кипит - при 3260 градусах, плотность его - 4,32-4,505 г/см3. Химический элемент довольно пластичен и сваривается в инертной атмосфере, он очень вязкий, склонен к налипанию на инструмент резки, в силу чего данный процесс осуществляется только при использовании специальной смазки. Взрывоопасной считается титановая пыль при температуре вспыхивания в 400 градусов Цельсия, а металлическая стружка пожароопасна.

Титан устойчив к прогрессирующей коррозии, а также к растворам кислот и щелочей. Известно и то, что, в случае нагревания до Цельсия, элемент начинает гореть очень ярким белым пламенем и образует оксидные фазы. Путем воздействия водорода, алюминия и кремния титан частично преобразуется в трихлорид и дихлорид титана, представляющие собой твердые вещества с сильными восстановительными свойствами.

Отрасли применения титана – металлургия и литье, где из этого химического элемента изготовляют высокопрочные реакторы, трубопроводы, арматуру, медицинское оборудование (инструменты и протезы), а также многое другое. Интересно и то, что из титана частично выполнен памятник Юрию Гагарину на одноименной площади в Москве.

Тита́н (лат. Titanium; обозначается символом Ti) - элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов , с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) - лёгкий металл серебристо-белого цвета.

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.
Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании - королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl 4:
TiO 2 + 2C + 2Cl 2 =TiCl 2 + 2CO

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием:
TiCl 4 + 2Mg = 2MgCl 2 + Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмноцентрированной упаковкой, температура полиморфного превращения α↔β 883 °C.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).
Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

Титан был первоначально назван «грегоритом» британским химиком преподобным Уильямом Грегором, который открыл его в 1791 году. Затем титан был независимо открыт немецким химиком М. Х. Клапротом в 1793 году. Он назвал его титаном в честь титанов из греческой мифологии - «воплощение естественной силы». Только в 1797 году Клапрот обнаружил, что его титан был элементом, ранее открытым Грегором.

Характеристики и свойства

Титан - это химический элемент с символом Ti и атомным номером 22. Это блестящий металл с серебристым цветом, низкой плотностью и высокой прочностью. Он устойчив к коррозии в морской воде и хлоре.

Элемент встречается в ряде месторождений полезных ископаемых, главным образом рутила и ильменита, которые широко распространены в земной коре и литосфере.

Титан используется для производства прочных лёгких сплавов. Двумя наиболее полезными свойствами металла являются коррозионная стойкость и отношение твёрдости к плотности, самое высокое из любого металлического элемента. В своём нелегированном состоянии этот металл столь же прочен, как некоторые стали, но менее плотный.

Физические свойства металла

Это прочный металл с низкой плотностью, довольно пластичный (особенно в бескислородной среде), блестящий и металлоидно-белый. Относительно высокая температура плавления более 1650 °C (или 3000 °F) делает его полезным в качестве тугоплавкого металла. Он парамагнитный и имеет довольно низкую электрическую и теплопроводность.

По шкале Мооса твёрдость титана равняется 6. По этому показателю он немного уступает закалённой стали и вольфраму.

Коммерчески чистые (99,2%) титаны имеют предельную прочность на разрыв около 434 МПа, что соответствует обычным низкосортным стальным сплавам, но при этом титан гораздо легче.

Химические свойства титана

Как алюминий и магний, титан и его сплавы сразу же окисляются при воздействии воздуха. Он медленно реагирует с водой и воздухом при температуре окружающей среды, потому что образует пассивное оксидное покрытие , которое защищает объёмный металл от дальнейшего окисления.

Атмосферная пассивация даёт титану отличную стойкость к коррозии почти эквивалентную платине. Титан способен противостоять атаке разбавленных серных и соляных кислот, растворов хлорида и большинства органических кислот.

Титан является одним из немногих элементов, которые сгорают в чистом азоте, реагируя при 800° C (1470° F) с образованием нитрида титана. Из-за своей высокой реакционной способности с кислородом, азотом и некоторыми другими газами титановые нити применяются в титановых сублимационных насосах в качестве поглотителей для этих газов. Такие насосы недороги и надёжно производят чрезвычайно низкое давление в системах сверхвысокого вакуума.

Обычными титаносодержащими минералами являются анатаз, брукит, ильменит, перовскит, рутил и титанит (сфен). Из этих минералов только рутил и ильменит имеют экономическое значение, но даже их трудно найти в высоких концентрациях.

Титан содержится в метеоритах и он был обнаружен на Солнце и звёздах M-типа с температурой поверхности 3200° C (5790° F).

Известные в настоящее время способы извлечения титана из различных руд являются трудоёмкими и дорогостоящими.

Производство и изготовление

В настоящее время разработаны и используются около 50 сортов титана и титановых сплавов. На сегодняшний день признаётся 31 класс титанового металла и сплавов, из которых классы 1−4 являются коммерчески чистыми (нелегированными). Они отличаются прочностью на разрыв в зависимости от содержания кислорода, причём класс 1 является наиболее пластичным (самая низкая прочность на разрыв с содержанием кислорода 0,18%), а класс 4 - наименее пластичный (максимальная прочность на разрыв с содержанием кислорода 0,40%).

Оставшиеся классы представляют собой сплавы, каждый из которых обладает конкретными свойствами:

  • пластичность;
  • прочность;
  • твёрдость;
  • электросопротивление;
  • удельная коррозионная стойкость и их комбинации.

В дополнение к данным спецификациям титановые сплавы также изготавливаются для соответствия требованиям аэрокосмической и военной техники (SAE-AMS, MIL-T), стандартам ISO и спецификациям по конкретным странам, а также требованиям конечных пользователей для аэрокосмических, военных, медицинских и промышленных применений.

Коммерчески чистый плоский продукт (лист, плита) может быть легко сформирован, но обработка должна учитывать тот факт, что металл имеет «память» и тенденцию к возврату назад. Особенно это касается некоторых высокопрочных сплавов.

Титан часто используется для изготовления сплавов:

  • с алюминием;
  • с ванадием;
  • с медью (для затвердевания);
  • с железом;
  • с марганцем;
  • с молибденом и другими металлами.

Области применения

Титановые сплавы в форме листа, плиты, стержней, проволоки, отливки находят применение на промышленных, аэрокосмических, рекреационных и развивающихся рынках. Порошковый титан используется в пиротехнике как источник ярких горящих частиц.

Поскольку сплавы титана имеют высокое отношение прочности на разрыв к плотности, высокую коррозионную стойкость, устойчивость к усталости, высокую стойкость против трещин и способность выдерживать умеренно высокие температуры, они используются в самолётах, при бронировании, в морских кораблях, космических кораблях и ракетах.

Для этих применений титан легирован алюминием, цирконием, никелем, ванадием и другими элементами для производства различных компонентов, включая критические конструктивные элементы, огневые стены, шасси, выхлопные трубы (вертолёты) и гидравлические системы. Фактически около двух третей произведённого титанового металла используется в авиационных двигателях и рамах.

Поскольку сплавы титана устойчивы к коррозии морской водой, они используются для изготовления гребных валов, оснастки теплообменников и т. д. Эти сплавы используются в корпусах и компонентах устройств наблюдения и мониторинга океана для науки и военных.

Удельные сплавы применяются в скважинных и нефтяных скважинах и никелевой гидрометаллургии для их высокой прочности. Целлюлозно-бумажная промышленность использует титан в технологическом оборудовании, подверженном воздействию агрессивных сред, таких как гипохлорит натрия или влажный хлорный газ (в отбеливании). Другие применения включают ультразвуковую сварку, волновую пайку.

Кроме того, эти сплавы используются в автомобилях, особенно в автомобильных и мотоциклетных гонках, где крайне важны низкий вес, высокая прочность и жёсткость.

Титан используется во многих спортивных товарах: теннисные ракетки, клюшки для гольфа, валы из лакросса; крикет, хоккей, лакросс и футбольные шлемы, а также велосипедные рамы и компоненты.

Благодаря своей долговечности титан стал более популярным для дизайнерских ювелирных изделий (в частности, титановых колец). Его инертность делает его хорошим выбором для людей с аллергией или тех, кто будет носить украшения в таких средах, как плавательные бассейны. Титан также легирован золотом для производства сплава, который может быть продан как 24-каратное золото, потому что 1% легированного Ti недостаточно, чтобы потребовать меньшую отметку. Полученный сплав представляет собой примерно твёрдость 14-каратного золота и более прочен, чем чистое 24-каратное золото.

Меры предосторожности

Титан является нетоксичным даже в больших дозах . В виде порошка или в виде металлической стружки, он представляет собой серьёзную опасность пожара и, при нагревании на воздухе, опасность взрыва.

Свойства и применение титановых сплавов

Ниже представлен обзор наиболее часто встречающихся титановых сплавов, которые делятся на классы, их свойства, преимущества и промышленные применения.

7 класс

Класс 7 механически и физически эквивалентен классу 2 чистого титана, за исключением добавления промежуточного элемента палладия, что делает его сплавом. Он обладает превосходной свариваемостью и эластичностью, наиболее коррозионной стойкостью из всех сплавов этого типа.

Класс 7 используется в химических процессах и компонентах производственного оборудования.

11 класс

Класс 11 очень похож на класс 1, за исключением добавления палладия для повышения коррозионной стойкости, что делает его сплавом.

Другие полезные свойства включают оптимальную пластичность, прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать особенно в тех случаях, когда коррозия вызывает проблемы:

  • химическая обработка;
  • производство хлоратов;
  • опреснение;
  • морские применения.

Ti 6Al-4V, класс 5

Сплав Ti 6Al-4V, или титан 5 класса, наиболее часто используется. На его долю приходится 50% общего потребления титана во всём мире.

Удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V может подвергаться термообработке для повышения его прочности. Этот сплав обладает высокой прочностью при малой массе.

Это лучший сплав для использования в нескольких отраслях промышленности , таких как аэрокосмическая, медицинская, морская и химическая перерабатывающая промышленность. Его можно использовать при создании:

Ti 6AL-4V ELI, класс 23

Класс 23 - хирургический титан. Сплав Ti 6AL-4V ELI, или класс 23, является версией более высокой чистоты Ti 6Al-4V. Он может быть изготовлен из рулонов, нитей, проводов или плоских проводов. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, малой массы, хорошей коррозионной стойкости и высокой вязкости. Он обладает превосходной устойчивостью к повреждениям.

Он может использоваться в биомедицинских применениях, таких как имплантируемые компоненты из-за его биосовместимости, хорошей усталостной прочности. Его также можно использовать в хирургических процедурах для изготовления таких конструкций:

  • ортопедические штифты и винты;
  • зажимы для лигатуры;
  • хирургические скобы;
  • пружины;
  • ортодонтические приборы;
  • криогенные сосуды;
  • устройства фиксации кости.

12 класс

Титан класса 12 обладает отличной высококачественной свариваемостью. Это высокопрочный сплав, который обеспечивает хорошую прочность при высоких температурах. Титан класса 12 обладает характеристиками, подобными нержавеющим сталям серии 300.

Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для производственного оборудования. Класс 12 можно использовать в следующих отраслях:

  • теплообменники;
  • гидрометаллургические применения;
  • химическое производство с повышенной температурой;
  • морские и воздушные компоненты.

Ti 5Al-2,5Sn

Ti 5Al-2,5Sn - это сплав, который может обеспечить хорошую свариваемость с устойчивостью. Он также обладает высокой температурной стабильностью и высокой прочностью.

Ti 5Al-2,5Sn в основном используется в авиационной сфере, а также в криогенных установках.

Титан (Titanium),Ti,- химический элемент IV группы периодической системы элементов Д. И. Мен­делеева. Порядковый номер 22, атомный вес 47,90. Состоит из 5 устойчивых изотопов; получены также искус­ственно радиоактивные изотопы.

В 1791 году английский химик У. Грегор нашёл в песке из местечка Менакан (Англия, Корнуолл) новую «зем­лю», названную им менакановой. В 1795 году немецкий хи­мик М. Клаирот открыл в минерале рутиле неиз­вестную еще землю, металл которой он назвал Титан [в греч. мифологии титаны - дети Урана (Неба) и Геи (Земли)]. В 1797 году Клапрот доказал тождество этой земли с открытой У. Грегором. Чистый титан выде­лен в 1910 году американским химиком Хантером посредством восстановления четырёххлористого титана натрием в же­лезной бомбе.

Нахождение в природе

Титан относится к числу наиболее распространённых в природе элементов, его содержание в земной коре составляет 0,6% (весовых). Встречается главным образом в ви­де двуокиси TiO 2 или её соединений - титанатов. Известно свыше 60 минералов, в состав которых входит титан Он содержится также в поч­ве, в животных и растительных организмах.Ильме­нит FeTiO 3 ирутил TiO 2 служат основным сырьём для получения титана. В качестве источника титана приобретают значение шлаки от плавкититано-магнетитов и ильменита.

Физические и химические свойства

Титан существует в двух состояниях: аморфный - темносерый порошок, плотность 3,392-3,395г/см 3 , и кристаллический, плотность 4,5 г/см 3 . Для кристаллического титана известны две модификации с точкой перехода при 885° (ниже 885° устойчивая гексагональная фор­ма, выше - кубическая); t° пл около 1680°;t° кип выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень хрупким. Технический металл поддаётся горячей обработ­ке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окисиTi 2 O 3 и нитридаTiN. В токе кислорода при красном калении окисляется до двуокисиTiO 2 . При высоких температурах реаги­рует с углеродом, кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте, влажному хлору, органическим кислотам и сильным щелочам. Рас­творяется в серной, соляной и плавиковой кислотах, лучше всего - в смесиHFиHNO 3 . Добавление к кислотам окислителя предохраняет металл от кор­розии при комнатной температуре. Галогениды четырёхвалентного титана, за исключениемTiCl 4 - кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калияK 2 TiF 6 . Важное значение имеют карбидTiCи нитридTiN- металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), туго­плавкостью (TiC,t° пл = 3140°; TiN,t° пл = 3200°) и хо­рошей электропроводностью.

Химический элемент №22. Титан.

Электронная формула титана имеет вид: 1s 2 |2s 2 2p 6 |3s 2 3p 6 3d 2 |4s 2 .

Порядковый номер титана в периодической системе химических элементов Д.И. Менделеева – 22. Номер элемента обозначает заряд ярда, следовательно у титана заряд ядра - +22, масса ядра – 47,87. Титан находится в четвертом периоде, в побочной подгруппе. Номер периода указывает на количество электронных слоев. Номер группы обозначает количество валентных электронов. Побочная подгруппа указывает на то, что титан относится к d-элементам.

Титан имеет два валентных электрона на s-орбитали внешнего слоя и два валентных электрона наd-орбитали предвнешнего слоя.

Квантовые числа для каждого валентного электрона:

4s4s
3d

С галогенами и водородом Ti(IV) образует соединения видаTiX 4 , имеющиеsp 3 →q 4 вид гибридизации.

Титан – металл. Является первым элементом d-группы. Наиболее устойчивым и распространенным являетсяTi +4 . Так же существуют соединения с более низкими степенями окисления –Ti 0 ,Ti -1 ,Ti +2 ,Ti +3 , но эти соединения легко окисляются воздухом, водой или другими реагентами вTi +4 . Отрыв четырех электронов требует больших затрат энергии, поэтому ионTi +4 реально не существует и соединенияTi(IV) обычно включают связи ковалентного характера.Ti(IV) в некоторых отношениях сходен с элементами –Si,Ge,SnиPb, особенно сSn.