Влажность почвы. учимся измерять влажность почвы. Методические рекомендации по проведению лабораторно-практических занятий при изучении дисциплины "орошаемое земледелие" Влажность почвы и методы ее определения

Для начала рассмотрим строение почвы. Во-первых, она состоит из твердых частиц и пор. К первым относятся песок, глина, гумус - все, что не является жидкостью или газом. А пустоты, которые находятся между этими твердыми частицами, называются порами. Эти поры заполняются газами (воздухом) или водой. В среднем, оптимальное отношение: 50% твердая фаза к 50% пор. Очень важен и размер этих пор. Самые маленькие поры формируют вместе «туннели» для воды - капилляры. Это очень важная часть почвы, так как по капиллярам может подниматься вода из более глубоких горизонтов. Считается, что корневая зона может увлажняться грунтовыми водами, если они находятся на глубине не более 3 м. Тогда влага из этих горизонтов и поднимается вверх по капиллярам. Кроме того, при пересыхании почвы, за счет поверхностных сил, вода может удерживаться в этих сосудах, не позволяя грунту высохнуть слишком быстро.

Влажность почвы - это процентное соотношение всей почвенной влаги к сухому грунту. То есть, влажность почвы 20% означает, что на 100 г полностью сухой почвы приходится 20 г влаги (или в 120 г почвы на вашем поле 20 г влаги). Очень важно запомнить, что для вычислений берется именно сухая почва, а не влажная. Например, молоко, жирностью 4% означает, что 4 г жира находится на 100 г цельного молока, а не обезжиренного (которого, соответственно, 96 г). Тогда как влажность почвы 4% - это 4 г влаги и 100 г сухой почвы (или 104 г почвы с влажностью 4%).

Влагоемкость почвы - это максимальное количество влаги, которое почва может в себе удержать.

Различают несколько влагоемкостей:

ПВ (полная влагоемкость) - максимальное количество воды, которое может вместиться во всех порах почвы. По сути, это полностью залитое поле. В этом случае количество воздуха в пустотах равняется нулю, такая ситуация на поле крайне нежелательна.

Но самый важный показатель - это наименьшая влагоемкость (НВ) , зная значения которой, удобнее всего определять необходимость полива. Это то количество влаги, которое почва способна «активно» удерживать с помощью различных сил (адсорбция, химические связи, гидроколлоиды, капилляры и т.п.). Если проще, то наименьшая влагоемкость достигается тогда, когда после полного насыщения почвы водой стекает лишняя влага, которая почвой активно не удерживается (вода с крупных пор).

Поэтому оптимальную влажность почвы и удобнее выражать в процентах НВ. Этот показатель показывает не только содержание влаги на вашем участке, но и ее форму. Свободная гравитационная влага недоступна растениям, а только вредит им. Слишком высокая НВ (85% и больше) пригодна для развития растений, но повышает риск развития корневых заболеваний.

Как правило, 100% НВ достигается при влажности почвы от 20% (легкие почвы) до 40% (суглинистые почвы). Другими словами, если у вас супесчаная почва, то оптимальные для большинства культур 75% НВ достигается при влажности почвы 15%, если же тяжелая - вплоть до 30%.

Влагоемкость - достаточно стабильный показатель. Если в почве не происходит кардинальных перемен (как, например, с тепличным субстратом, где создается интенсивный агрофон, вносятся удобрения, торф, мелиоранты), то этот параметр достаточно измерять раз в несколько лет. Он нужен для того, чтобы правильно использовать результаты измерения влажности почвы.

Например, если НВ 30%, а влажность почвы 21 %, то эту влажность почвы можно выразить как 70% нормальной влагоемкости.

Это можно выразить как: чтобы заполнить ящик плодами на 60%, сначала нам нужно узнать емкость этого ящика (узнать НВ грунта). Следующий шаг - нам нужно взвесить плоды, которые уже находятся в ящике (влажность почвы). При этом в одном и том же виде ящиков количество плодов может быть разное (достаточно один раз узнать НВ своей почвы, влажность меняется постоянно). И вот, если мы знаем, что в ящике емкостью 10 кг находится 3,5 кг плодов, то он заполнен на 35%, значит, нам нужно доложить 2,5 кг плодов. Подобьем первые итоги. Чтобы научиться поливать растения правильно, необходимо:

  • Определить способ, которым будет измеряться влажность почвы (однократно);
  • Измерить плотность, затем НВ своей почвы (однократно);
  • Измерять влажность своей почвы (регулярно);
  • Перевести влажность почвы в % от НВ.
  • Следить, чтобы влажность почвы не выходила за определенные рамки. Например, не была ниже 60% НВ и выше 80% НВ. То есть, начинать полив нужно при 60% НВ.
Как измерять влагоемкость грунта?

Наименьшая влагоемкость почвы наблюдается, когда после обильного увлажнения (или затопления) вся лишняя влага уходит в глубокие горизонты. Поэтому в полевых условиях этот параметр можно измерять при залегании грунтовых вод глубже 3 м, иначе они будут постоянно насыщать грунт новыми порциями влаги.

Ранней весной, когда почва наполнена талыми водами, выбирают типичный участок поля (1,5x1,5 м), который накрывают пленкой и соломой, чтобы предотвратить испарение влаги. На орошаемых землях анализ можно проводить после обильного полива. Существует и третий вариант - создание небольшого участка затопления. Для этого выбранный участок окружается земляными валами (земля берется вдалеке от площадки, чтобы не нарушать рельеф поля), деревянными или железными рамами. Для промачивания почвы нужно использовать 200 л воды на квадратный метр, если почвы легкие, до 300 - на суглинистых. В том месте, куда будет наливаться вода, нужно положить фанерку, чтобы не размывать грунт струей. Воду нужно вливать порционно, чтобы ее слой был высотой не более 5 см. Следующую порцию подают после того, как предыдущая впитается.

Во всех трех случаях землю накрывают клеенкой и соломой. Через сутки, трое суток, а на суглинистых почвах и через 10 суток отбирают образцы почвы через каждые 10 см (0-10, 10-20, 20-30...) и измеряют влажность образцов. Полученные данные называют НВ1, НВЗ и НВ10 соответственно. На супесчаных грунтах самый оптимальный параметр - НВЗ, на тяжелых - НВ10. НВ1 актуален там, где избытки влаги стекут уже в течение суток (содержание песка близкое к 100%, большое количество крупнозернистой фракции).

Показателем наименьшей влагоемкости будет влажность образца. То есть, если на 100 г высушенного в термостате грунта в образце придется 27 г воды, значит, 100% НВ соответствует 27% влажности почвы.

Измерение влажности почвы

Самым точным методом, который используют и лаборатории, считается термостатно-весовой. Он очень прост и использует всего три вида оборудования: весы, термостат и бур, который может заменяться лопаткой. Термостатом может послужить практически любая печь, духовка или котел, и градусник. Минус этого метода очевиден - узнать влажность почвы можно только через 2-3 дня с момента отбора пробы, поэтому определить таким образом необходимость полива будет крайне сложно. Но другие методы измеряют не влажность почвы, а другие ее свойства, которые зависят от влажности. Так, например, электропроводимость почвы зависит от концентрации почвенного раствора (например, анализ с помощью прибора TDS-метра). С одной стороны, она выше, если меньше влажность, с другой же - любое внесение удобрений сильно повлияет на результат исследования.

Определившись, каким образом вы планируете регулярно измерять влажность почвы, для определения НВ советуется использовать как термостатно-весовой метод, так и выбранный вами прибор. Таким образом, вы проведете своего рода калибровку.

Рассмотрим пример. Если плотность Вашей почвы будет составлять 1,1 г на кубический сантиметр, согласно термостатно-весовому методу НВ почвы будет 30% ее влажности, а согласно оперативному методу - 25%, то ошибка измерения составит 165 т воды на га. Поэтому, определяя влажность почвы выбранным прибором, за 100% НВ нужно будет принимать влажность почвы в 25%.

Измерение влажности с помощью электрических приборов чаще всего исследует другие свойства почвы: сопротивления, электропроводимости, индуктивности и т.п.

Самое широкое распространение получили приборы, которые измеряют диэлектричиеские свойства почвы. Чаще всего профессиональный прибор весит несколько сот грамм, оборудованный специальным щупом. После «укола» почвы щупом, экран прибора показывает ее влажность в процентах (спустя 3-5 секунд).

Существуют и упрощенные версии такого оборудования для частного сектора, он может измерять влажность почвы (с точностью до 10%), ее кислотную среду, более дорогие модели - температуру почвы. Приборы восточных стран даже не всегда показывает цифры, некоторые модели ограничиваются шкалами, вроде почва «очень сухая» и т.п. Делать большие ставки на такую электронику не стоит - у нее даже не всегда есть возможность калибровки. Существуют в продаже и мини-модули, которые могут быть частью системы для бюджетной системы автоматизации (например, Ardunino).

Тензиометры

Метод измерения влажности тензиометром основан на изменении давления внутри трубки прибора. Прибор состоит из вакуумной керамической трубки и вакуумного манометра (прибор для измерения давления).

Перед использованием тензиометр заряжается - погружается в воду до полного насыщения керамической трубки. После он размещается в поле (заглубляется в грунт). Советуется использовать два тензиометра, для разной глубины (например, для 20 и 40 см). Чем более сухой становится почва, тем сильнее она "вытягивает" воду с вакуумной трубки прибора, в результате чего давление в ней падает. Второй элемент тензиометра - вакуумный манометр измеряет это падение. Эти данные уже с помощью специальных таблиц переводят в фактическую влажность почвы.

Так как прибор фиксирует падение давления, то стрелка отклоняется в минусовую сторону (ниже нуля). Чем дальше она отходит от нулевой отметки, тем ниже влажность почвы. Без таблиц использовать данные прибора нельзя, так как при полной влагоемкости стрелка может показывать от - 10 сантибар (примечание : сантибар - 0,01 бар) на тяжелых почвах до - 40 сантибар на легких. Нужно учитывать и влияние других факторов, в том числе, температуры почвы.

Так сколько же поливать?

Последнее, что нам нужно сделать - рассчитать норму полива. Для этого можно использовать приборы, которые есть в наличии (поливать до тех пор, пока прибор не зафиксирует нужную нам влажность почвы) или рассчитывать норму математическим методом.

Тут все немного сложнее. Первое, что нам нужно узнать - удельный вес сухой почвы (масса 1 см3 почвы в граммах или 1 м3 в тоннах), его также называют плотностью. Но для этого не подойдут наши образцы - их объем будет нарушен при сушке. Проще всего узнать удельный вес из таблиц, так как этот параметр не слишком переменчив и больше всего зависит от гранулометрического состава почвы. Конечно, рыхление снижает ее удельный вес, но на норму полива это не повлияет.

Если мы знаем, что в наш ящик нужно доложить плодов на 25% его вместимости, то мы умножаем эту вместимость на 0,25 (10 кг % 0,25 = 2,5 кг). Аналогично и с почвой. Если Вам нужно увеличить влажность почвы на 10%, то Вам нужно умножить ее массу на 0,1.

Чтобы узнать массу почвы на Вашем участке, нужно ее площадь в квадратных метрах умножить на 0,3 (корневая зона - это 30 см или 0,3 м) и умножить на удельный вес.

Для гектара это будет 10 000 м2 х 0,3 м = 3000м3.

Если 1 м3 грунта весит 1,1 т, то нам нужно увлажнить: 3 000 м3 х 1,1 т/м3 = 3,3 тыс. т почвы. Тогда норма полива (10% от этой цифры) составит 330 м3.

Ну и самый простой способ определения влажности почвы - ее нужно сжать в руке. Если сквозь пальцы не начала проникать вода, но, разжав ладонь, почва остается в комке - это удовлетворительная влажность. Скоро придется поливать. Сколько нужно полить? Этот метод не ответит на такие вопросы.

Чтобы измерять влажность почвы термостатно-весовым методом, нужно проделать следующие операции:

  • Подготовить жаропрочную посуду для образцов. В лабораторных условиях для этого используют алюминиевые бюксы с притертыми крышками. И бюкс и крышка имеют свой номер, который записывается, чтобы сохранить точность анализа. Посуда должна быть чистой, предварительно взвешенной с максимальной точностью (бюкс с крышкой вместе) - масса 1. Здесь придется или использовать точные весы (согласно методике, весы должны взвешивать до 0,01 г, но подойдут и с точностью до 0,1 г). Если нет возможности воспользоваться такими весами, на анализ отбирают больше грунта, но тогда и сушить его придется дольше.
  • Отобрать пробу грунта с помощью бура или лопатки. Поместить их в приготовленную посуду на половину объема (до 2/3).
  • Взвесить посуду, крышку и грунт вместе - масса 2.
  • Поставить их на сушку при температуре 100-105°С, пока вес бюкса не перестанет меняться. Так узнаем массу 3.
  • Перед последним взвешиванием закрыть посуду крышкой и дать ей остыть в плотно закрытом шкафчике.
  • Сушка позволяет узнать, сколько воды было в образце почвы (масса 2 минус масса 3) и вес сухого грунта (масса 3 минус масса 1). Массу воды делят на массу сухого грунта и умножают на 100% - так узнают влажность почвы в момент отбора пробы.

Водные свойства почвы. Методы определения влажности почвы

К основным водным свойствам почвы относят ее водопроницаемость, водоудерживающую и водоподъемную способности.

Водопроницаемостью почвы принято называть способность почвы впитывать и пропускать через себя воду из верхних ее горизонтов в нижние. Ее можно разделить на две стадии. Первая стадия принято называть впитыванием и проявляется в более сухих почвах, когда свободные от влаги поры начинают заполняться водой. В течение периода впитывания водопроницаемость почвы под лесом значительно выше, чем в почве на открытой местности, что объясняется лучшей структурой лесных почв. С окончанием впитывания водопроницаемость лесных почв и прилегающих почв на открытой местности выравнивается.

Вторая стадия представлена фильтрацией. Она, как правило, проявляется во время обильных осадков. В это время в почве, которая уже полностью насыщена водой, влага начинает передвигаться под влиянием силы тяжести и градиента напора.

Водопроницаемость зависит от механического состава, содержания перегноя и оструктуренности почв. Интенсивность водопроницаемости почвы зависит от размера и количества пор.
Размещено на реф.рф
Легкие песчаные и супесчаные почвы, имеющие большое количество крупных пор, всœегда отличаются высокой водопроницаемостью.

Водоудерживающая способность - это способность удерживать в своих порах воду. Для характеристики водоудерживающей способности почвы введено понятие ее влагоёмкости. Влагоёмкостью называют наибольшее количество воды, ĸᴏᴛᴏᴩᴏᴇ может удерживать почва с помощью тех или иных сил. Обычно она выражается в процентах от массы сухой почвы. Одним из факторов водоудерживающей способности почв является свойство почвенных частиц сорбировать на своей поверхности парообразную влагу. Такая способность почвы получила название гигроскопичности, а сама парообразная влага, удерживаемая на поверхности твердой фазы – гигроскопической.

Величина гигроскопической влажности зависит от удельной поверхности почвы, содержания в ней гумуса, состава обменных оснований и состава минœералов. Чем выше влажность воздуха, тем больше гигроскопичность почвы. Гигроскопичность увеличивается с повышением гумусированности почвы и емкости поглощения катионов.

Максимальная гигроскопичная влажность (МГВ) - ϶ᴛᴏ наибольшее количество влаги, ĸᴏᴛᴏᴩᴏᴇ абсолютно сухая почва может поглотить из воздуха, почти полностью насыщенного парами (с относительной влажностью 100%). МГВ является очень важным показателœем, так как с его помощью можно рассчитать влажность устойчивого завядания растений и соответственно запасы труднодоступной влаги в почве.

При относительной влажности воздуха более 80% сорбция водяных паров сопровождается конденсацией влаги на стыках между частицами почвы, что происходит из-за более низкой упругости водяного пара над вогнутой поверхностью. По этой причине почва, насыщенная до максимальной гигроскопической влажности, при соприкосновении с водой сохраняет способность притягивать ее новые порции. Такая влага, конденсированная на вогнутых поверхностях и удерживаемая почвой с меньшей силой, принято называть рыхлосвязанной водой .

Наибольшее количество прочносвязной влаги, которая может удерживаться на поверхности почвенных частиц с помощью сорбционных сил, характеризуется максимальной адсорбционной влагоёмкостью (МАВ). Этот вид влагоёмкости обычно на 30-40% меньше, чем максимальная гигроскопическая влажность.

Наибольшее количество рыхлосвязанной воды, ĸᴏᴛᴏᴩᴏᴇ почва может удержать с помощью сил молекулярного притяжения,принято называть максимальной молекулярной влагоёмкостью (ММВ) . У песчаных почв ММВ не превышает 5-7%, а толщина плёнки вокруг почвенных частиц составляет несколько десятков молекул. У глинистых почв ММВ может достигать 25-30%, однако у них из-за меньшего диаметра пор пленка рыхлосвязанной воды должна быть значительно тоньше.

Полной влагоёмкостью (ПВ) принято называть наибольшее количество воды, ĸᴏᴛᴏᴩᴏᴇ может поглотить почва при полном заполнении всœех ее пор.
Размещено на реф.рф
В таком состоянии почва может находиться долгое время лишь в том случае, в случае если влага в крупных некапиллярных порах подпирается снизу грунтовыми водами. В случае если этого не происходит, то гравитационные воды стекают под действием силы тяжести вниз. В этом случае почва переходит в состояние увлажнения, называемое наименьшей (НВ) или предельно-полевой влагоемкостью.

Наблюдается в горизонте грунтовых вод, а также при чрезмерном увлажнении ее поливными водами или дождями ливневого характера.

Оптимальной влажностью для большинства сельскохозяйственных растений условно принято считать влажность, приблизительно равную 50% полной влагоёмкости почвы.

Наименьшая (НВ) или предельно-полевая влагоёмкость (ППВ) - ϶ᴛᴏ наибольшее количество влаги, ĸᴏᴛᴏᴩᴏᴇ может удерживать почва после стекания гравитационной воды при отсутствии слоистости почвы и глубоком залегании грунтовых вод. В хорошо оструктуренных тяжелых почвах значение данного показателя составляет 30-35% от массы сухой почвы, в песчаных почвах - 10-15%.

Наибольшее количество капиллярно-подпертой влаги, ĸᴏᴛᴏᴩᴏᴇ может удержать почва над уровнем грунтовых вод принято называть капиллярной влагоёмкостью (КВ). Эта влагоемкость зависит от количества капиллярных пор и глубины залегания грунтовых вод. Чем ближе к почве располагаются грунтовые воды, тем выше ее капиллярная влагоемкость.

Все виды влагоёмкости зависят от механического состава, содержания перегноя, структурности почвы. Почвы глинистые, структурные, с более высоким содержанием перегноя более влагоёмки, чем почвы песчаные, супесчаные, где меньше перегноя, хуже структура и более легкий механический состав.

Водоподъемная способность - это свойство почвы поднимать влагу по капиллярным порам из нижних слоев в верхние. Наиболее интенсивно вода передвигается за счёт капиллярных сил в порах, диаметр которых находится в пределах 0,1-0,003 мм. С увеличением диаметра пор скорость поднятия воды увеличивается, однако высота ее подъема падает. Поры, размер которых менее 0,003 мм, как правило, заполнены связанной пленочной влагой и в них высота и скорость подъема воды заметно снижаются. Вода в таких порах передвигается как пленочная. Капиллярные силы начинают проявляться в порах диаметром менее 8 мм. Наибольшей капиллярной силой обладают поры размером от 100 до 3 мкм(микрон).

Влажность почвы подразделяют на абсолютную и относительную.

Абсолютная влажность - это общее количество воды в почве, выраженное в процентах по отношению к массе почвы.

Относительная влажность - отношение абсолютной влажности данной почвы к ее предельно-полевой влагоемкости.

По относительной и абсолютной влажности почвы определяют доступность почвенной влаги культурным растениям.

Влажность завядания растений - влажность почвы, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, то есть это нижний предел доступности растениям влаги. Зная абсолютную влажность и влажность завядания растений, можно рассчитать запас продуктивной влаги.

Продуктивная (активная) влага - количество воды сверх влажности завядания, используемое растениями для создания урожая. Так, в случае если абсолютная влажность данной почвы в пахотном слое составляет 43 %, а влажность завядания - 13 %, то запас продуктивной влаги равняется 30 %. Для удобства определœения количество продуктивной влаги выражают в миллиметрах водяного столба. В таком виде продуктивную влагу легче сопоставлять с количеством осадков. Каждый миллиметр воды на площади 1 га соответствует 10 т воды.

Водные свойства почвы. Методы определения влажности почвы - понятие и виды. Классификация и особенности категории "Водные свойства почвы. Методы определения влажности почвы" 2017, 2018.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПОЧВЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ , МАКСИМАЛЬНОЙ
ГИГРОСКОПИЧЕСКОЙ
ВЛАЖНОСТИ И ВЛАЖНОСТИ
УСТОЙЧИВОГО
ЗАВЯДАНИЯ РАСТЕНИЙ

ГОСТ 28268 - 89

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ
КАЧЕСТВОМ
ПРОДУКЦИИ И СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Дата введения с 01.06.9 0

до 01.06.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на некаменистые почвы, т. е. почвы, в которых массовая доля частиц крупнее 3 мм не превышает 0,5 %, и устанавливает методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений.

1. МЕТОД ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПОЧВЫ

Сущность метода заключается в определении потери влаги при высушивании почвы.

7 - при влажности почвы до 10 %;

» »св. 10 %.

1.1. Метод отбора проб

1.3.2. Чистые пронумерованные стаканчики ВС-1 сушат в шкафу при температуре (105±2) ° С в течение 1 ч, вынимают из шкафа, охлаждают в эксикаторе с хлористым кальцием и взвешивают с погрешностью не более 0,1 г.

1.4 . Проведение анализа

1.4.1. Аналитические почвенные пробы помешают в пронумерованные, высушенные и взвешенные стаканчики и закрывают их крышками.

1.4.2. Стаканчики и почву в стаканчиках взвешивают с погрешностью не более 0,1 г.

1.4.3 . Стаканчики открывают и вместе с крышками помещают в нагретый сушильный шкаф.

Почву высушивают до постоянной массы при температуре:

(105±2) ° С - все почвы, за исключением загипсованных;

(80±2) ° С - загипсованные почвы.

Время высушивания до первого взвешивания:

незагипсованных почв: песчаных - 3ч, других - 5ч;

загипсованных почв - 8ч.

Время последующего высушивания:

песчаных почв - 1 ч;

других почв, в том числе загипсованных - 2ч.

1.4.4. После каждого высушивания стаканчики с почвой закрывают крышками, охлаждают в эксикаторе с хлористым кальцием и взвешивают с погрешностью не более 0,1 г. Если взвешивание производят не позднее 30 мин после высушивания, можно охлаждать закрытые стаканчики на открытом воздухе без эксикатора. Высушивания и взвешивания прекращают, если разность между повторными взвешиваниями не превышает 0,2 г. Почвы с высоким содержанием органического вещества могут при повторных взвешиваниях иметь большую массу, чем при предыдущих, из-за окисления органического вещества при высушивании. В таких случаях для расчетов следует брать наименьшую массу.

1.5. Обработка результатов

1.5.1 . Массовое отношение влаги в почве ( W ) в процентах вычисляют по формуле

где m 1 - масса влажной почвы со стаканчиком и крышкой, г;

- масса высушенной почвы со стаканчиком и крышкой, г;

m - масса пустого стаканчика с крышкой, г.

За результат анализа принимают среднее арифметическое значение результатов двух параллельных определений. Вычисления проводят до второго десятичного знака с последующим округлением результата до первого десятичного знака.

1.5.2. Допускаемые относительные отклонения результатов параллельных определений от их среднего арифметического при доверительной вероятности Р=0,95 составляют, % от измеряемой величины:

5 - при влажности почвы до 10 %;

»» св. 10 %.

2. МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ГИГРОСКОПИЧЕСКОЙ ВЛАЖНОСТИ ПОЧВЫ

Сущность метода заключается в насыщении почвы парообразной влагой с последующим определением влажности почвы.

Предельное значение суммарной относительной погрешности метода при доверительной вероятности Р=0,95 составляет, % от измеряемой величины:

10 - при максимальной гигроскопической влажности до 5 %;

7»»»св. 5 %.

2.1. Метод отбора проб

2.1.1 . Отбор проб - по .

2.1.2. Из пробы, поступившей на анализ, пинцетом удаляют крупные растительные остатки (стебли, дернина, крупные корни и т. д.). Почву высушивают на открытом воздухе до воздушно-сухого состояния, измельчают вручную в ступке по пестиком с резиновым наконечником. Минеральную почву допускается измельчать на специальных мельницах.

2.1.3 . Измельченную почву просеивают через сито по ГОСТ 214: минеральную через сито с отверстиями диаметром 1 мм, торфяную - 2 мм.

2.1.4 . Из измельченной и просеянной почвы методом квартования отбирают две аналитические пробы массой 5 - 15 г каждая.

2.2 . Аппаратура, материалы и реактивы

Шкаф сушильный с регулятором температуры от 80 до 105 °С с погрешностью регулирования до 2 °С.

Стаканчики стеклянные для взвешивания с крышками типа СН по ГОСТ 25336.

Калька или пергаментная бумага, полиэтиленовая пленка.

Вазелин технический.

Калий сернокислый по ГОСТ 4145, ч. д. а.

Вода дистиллированная по .

Кальций хлористый технический.

2.3. Подготовка к анализу

2.3.1. Подготовка эксикатора с насыщенным раствором сернокислого калия

В эксикатор заливают дистиллированную воду, подогретую до (40±5) °С, слоем, равным 1/2 высоты от дна эксикатора до фарфоровой вставки. Насыпают и растворяют при перемешивании сернокислый калий, пока на дне эксикатора не появятся нерастворяющиеся кристаллы сернокислого калия.

2.3.2. Подготовка стеклянных стаканчиков с крышками

Чистые пронумерованные стаканчики сушат в шкафу, охлаждают в эксикаторе с хлористым кальцием и взвешивают с погрешностью до 0,001 г.

2.4. Проведение анализа

2.4.1. Аналитические пробы, отобранные по пп. - , помещают в предварительно пронумерованные, высушенные и взвешенные стаканчики, подбирая диаметр стаканчиков таким образом, чтобы слой почвы в них не превышал 4 мм.

2.4.2 . Стаканчики с почвой без крышек помещают в эксикатор с насыщенным раствором сернокислого калия для насыщения почвы парами воды. Крышку эксикатора закрывают герметично, добиваясь зеркального блеска поверхности шлифов, как указано в . Для предотвращения конденсации паров воды при резких колебаниях температуры в помещении эксикатор помещают в теплоинерционную защиту (одеяло, пенопластовая оболочка и др.). Допускается насыщение почвы в вакуумных эксикаторах или в вакуумных шкафах.

2.4.3. Первое взвешивание стаканчиков с почвой производят через 15 суток после начала насыщения. Для этого открывают эксикатор, закрывают стаканчики с почвой крышками и взвешивают их с погрешностью не более 0,001 г. Затем крышки снимают и стаканчики с почвой снова помещают в эксикатор с раствором сернокислого калия для дополнительного Насыщения, выполняя требования

2.4.4. Повторные взвешивания производят через каждые 5 дней. Насыщение почвы влагой считают законченным, если разность масс при повторных взвешиваниях составляет не более 0,005 г.

2.4.5. После окончания насыщения определяют влажность почвы по , но при этом взвешивание производят с погрешностью не более 0,001 г.

2.5. Обработка результатов

2.5.1. Максимальную гигроскопическую влажность в процентах вычисляют по

За результат анализа принимают среднее арифметическое значение результатов двух параллельных определений. Вычисление проводят до третьего десятичного знака с последующим округление до результата до второго десятичного знака,

2.5.2. Допускаемые относительные отклонения результатов параллельных определений от их среднего арифметического при доверительной вероятности Р=0,95 составляют, % от измеряемой величины:

7 - при максимальной гигроскопической влажности почвы до 5 %

5»»»» св. 5 %.

3. МЕТОД ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ УСТОЙЧИВОГО ЗАВЯДАНИЯ РАСТЕНИЯ

Сущность метода заключается в выращивании растений методом вегетационных миниатюр, снижении запасов влаги в почве до устойчивой потери листьями растений тургора и определении влажности почвы.

Предельное значение суммарной относительной погрешности метода при доверительной вероятности Р=0,95 составляет, % от измеряемой величины:

10 - при влажности устойчивого завядания до 10 %;

7»»»св. 10 %.

3.1. Метод отбора проб

3.1.1. Отбор проб - по . Подготовка пробы - по

3.1.2 . Почву измельчают вручную в ступке по пестиком с резиновым наконечником и просеивают через сито по ГОСТ 214 с отверстиями диаметром 3 мм.

3.1.3 . В просеянной почве определяют влажность в процентах по пп. -

3.1.4 . Методом квартования отбирают две пробы почвы. Массу пробы влажной почвы (m вп ) в граммах вычисляют по формуле

m вп = 1,65 W - 165,

где W - влажность почвы, %.

3.2 . Аппаратура, материалы и реактивы

Стаканы стеклянные вместимостью 200 см 3 , типа В, исполнения 1 или 2 по ГОСТ 25336.

Установка дневного света, обеспечивающая освещенность площадки 5000 лк.

Психрометр аспирационный.

Кювета с крупнозернистым песком.

Цилиндры мерные вместимостью 100 и 250 см 3 но .

Эксикатор исполнения 2 по ГОСТ 25336 со вставкой исполнения 1 по .

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по .

Калька или полиэтиленовая пленка.

Аммоний фосфорнокислый однозамещенный по ГОСТ 3771, ч. д. а.

Аммоний азотнокислый по ГОСТ 22867, ч. д. а.

Калий азотнокислый по ГОСТ 4217, ч. д. а.

Вода дистиллированная по .

3.3. Подготовка к анализу

3.3.1. Готовят раствор питательной смеси из расчета 50 см 3 на один стакан. Приготовление питательной смеси осуществляется растворением в 5 дм 3 воды следующих солей:

аммония фосфорнокислого однозамещенного - 2,03 г;

аммония азотнокислого - 3,88 г;

калия азотнокислого - 2,68 г.

3.3.2. Из кальки вырезают кружки по размеру стакана для предохранения от испарения с поверхности почвы.

3.3.3 . Отбирают для посева семена ячменя, овса или хлопчатника с всхожестью не менее 95 % (семена 1-го класса по ГОСТ 10469, ГОСТ 10470, ГОСТ 5895). В районах хлопкосеяния для выращивания используют семена хлопчатника, во всех остальных - ячменя или овса.

3.3.4 . Для проращивания семян берут кювету, заполненную обильно увлажненным песком. Увлажнение песка производят до такой степени, чтобы при наклоне кюветы на поверхности выступала вода. Семена укладывают равномерно, накрывая листом бумаги, и ставят в помещение с температурой (20±2) ° С. Допускаются способы проращивания семян, установленные ГОСТ 12038. Ход прорастания семян контролируют ежедневно.

3.4. Проведение анализа

3.4.1. Почву, отобранную для анализа по , засыпают в стеклянные стаканы вместимостью 200 см 3 . Легким постукиванием дна стакана о поверхность стола или шпателя о стенки стакана добиваются уплотнения почвы до объема 150 см 3 . Если при засыпании ее в стакан ниже черты, анализ проводят без уплотнения.

3.4.2. Выращивание растений производят при увлажнении, близком к оптимальному, что соответствует следующим значениям влажности почв и:

песок, супесь - 10-15 %;

легкий, средний суглинок- 15-25 %;

тяжелый суглинок, глина - 25-35 %.

Механический состав почвы определяют по данным лабораторного анализа; допускается визуальное определение по методике, приведенной в .

Массу воды (m В ) в граммах, необходимую для достижения этого уровня увлажнения, вычисляют по формуле

где W опт - оптимальная влажность почвы, соответствующая указанным интервалам и механическому составу почвы, %;

W - влажность почвы, определенная по , %. Полив почвы до заданного уровня осуществляют сначала питательной смесью по 50 см 3 на стакан, а затем чистой водой и контролируют по массе стакана с почвой. Взвешивание производят с погрешностью до 0,1 г.

3.4.3. Наклюнувшиеся семена с проросшим корешком длиной не более половины зерна выбирают пинцетом и высаживают в увлажненную почву по 5 шт. на один стакан. Семена высаживают в предварительно сделанные пинцетом лунки на глубину около 0,5 см, закрывая почвой. После посадки семян стаканы закрывают листом плотной бумаги для предотвращения быстрого высыхания поверхности почвы.

3.4.4. При появлении всходов бумагу снимают и помещают растения в стаканах под установку искусственного освещения с интенсивностью освещения (5000±500) лк. В центре установки на уровне травостоя помещают аспирационный психрометр. Растения выращивают при комнатной температуре и продолжительности освещения 16 ч в сутки.

3.4.5. Ежедневно производят контрольные взвешивания стаканов с погрешностью до 0,1 г. Когда влагозапасы в почве снизятся до нижнего предела оптимального увлажнения, соответствующего (75±5) % от оптимальной влажности, производят полив водой до оптимальной влажности, контролируя его взвешиванием с погрешностью до 0,1 г.

3.4.6. После появления первого (у хлопчатника первого настоящего) листа два растения из пяти удаляют, оставляя три наиболее развитых.

3.4.7. Ежедневно утром и в полуденные часы производят наблюдения за состоянием растений. Когда третий лист ячменя или овса разовьется до уровня второго, а у хлопчатника наступит фаза развертывания третьего настоящего листа, в заготовленных по размеру стакана кружках из кальки прорезают отверстия, в которые вставляют растения, а кружки из кальки укладывают на поверхность почвы так, чтобы края кальки не касались ростков. После этого на кружки насыпают песок ровным слоем толщиной не менее 2 см.

3.4.8. После засыпания кружков песком прекращают контрольные взвешивания и полив. Как только во время наблюдения будут замечены растения, у которых на всех листьях снижен тургор, их переставляют в эксикатор, где влажность воздуха близка к насыщению. Эксикатор помещают на ночь в теплоинерционную защиту из вспомогательных средств (одеяло, пенопластовая оболочка и др.) для предотвращения резких колебаний температуры и конденсации паров воды внутри эксикатора. Если к утру растение восстановило тургор хотя бы на одном листе, стакан возвращают под установку искусственного освещения. Если к утру тургор не восстановился ни на одном листе, то почва в этом стакане достигла влажности устойчивого завядания и стакан в тот же день разбирают.

3.4.9. Растения срезают. Удаляют песок, кальку и верхние 2 см почвы. Оставшуюся почву освобождают от корней и определяют влажность почвы по , которая является влажностью устойчивого завядания растений.

3.5. Обработка результатов

3.5.1. Влажность устойчивого завядания растений ( W B 3 ) в процентах вычисляют по формуле .

За результат анализа принимают среднее арифметическое результатов четырех параллельных определений. Результат вычисляют в процентах до второго десятичного знака с последующим округлением до первого десятичного знака.

3.5.2. Допускаемые относительные отклонения результатов параллельных определений от их среднего арифметического при доверительной вероятности Р=0,95 составляют, % от измеряемой величины:

7 - при влажности устойчивого завядания до 10 %;

5 »» » » св . 10 %.

ПРИЛОЖЕНИЕ 1

Справочное

ПОДГОТОВКА ОБОРУДОВАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПОЧВЫ

1. Установка и регулировка весов

Весы лабораторные общего назначения 4-го класса точности с наибольшим пределом взвешивания 100 г по устанавливают по уровню, затем устанавливают начало шкалы, соответствующее 0,0 г. Правильность установки носов и их регулирования проверяют гирями 2-го класса точности. Начало шкалы, середина шкалы, соответствующая 50,0 г, и конец шкалы, соответствующий 100,0 г, должны совпадать с указанными делениями шкалы с погрешностью не более 0,1 г. При несовпадении, превышающем 0,1 г, регулировочными винтами добиваются необходимого совпадения. Весы позволяют работать в интервалах 0-100, 100-200, 200-300, 300-400 и 400-500 г. Указанные требования должны выполниться в каждом из этих интервалов.

2. Установка и регулировка сушильного шкафа

Влажность земли является важнейшим агротехническим параметром в почвоведении, геологии, экологии, садоводстве, который оказывает серьезное воздействие на качественное функционирование экологической системы – биогеоценоза. На сегодняшний день существует множество способов его измерения. В статье расскажем про определение влажности почвы, сравним эффективность различных приборов для ее измерения.

Причины необходимости увлажненности земли

В период вегетации уровень воды в тканях и клетках растительных организмов составляет 70-90 %.

Влажность – это один из главных факторов, влияющих на плодородность грунта. Она реализует такие задачи:

  • обогащение овощных и плодовых культур водой;
  • увлажненность грунта влияет на количество воздуха, уровень соли, а также наличие вредных компонентов;
  • обеспечивает пластичную и плотную структуру земли;
  • влияет на температуру, а также теплоемкость;
  • не допускает выветривания грунтов;
  • показывает способность почвы к агротехническим и сельскохозяйственным процессам.

Для полноценной жизнедеятельности растительного организма его клеткам, а также тканям следует в достаточном объеме получать воду, в частности во время активации жизненные процессов.

Оптимальные уровни увлажненности грунта


На данный момент в экспериментальной разработке находятся два вида полива – струйный и импульсный.

Совет #1. Следует учесть, что уровень оптимальной влажности во время всходов должен быть выше, нежели в процессе дозревания сельскохозяйственных культур.

Как определить увлажненность земли

На сегодняшний день существуют такие методы исчисления влажности грунта:

  • термостатно-весовой;
  • радиоактивный – представляет собой измерение излучения радиоактивных веществ, находящихся в земле;
  • электрический – в данном случае производится определение почвенного сопротивления, проводимости, индуктивности, а также емкости;
  • тензометрический – метод основывается на разнице напряжения воды между границами фаз;
  • оптический – этот способ характеризуется отражаемостью световых потоков;
  • экспресс-методы, в частности органолептический.

Самыми легкими и распространенными считаются термостатно-весовой, а также органолептический методы. Первый является наиболее точным, а второй, в свою очередь, требует мало времени и не нуждается в специальном оборудовании. Приспособления для определения электрического сопротивления указаны в таблице.

Определение электрического сопротивления

В данном случае применяются датчики, которые изготовлены из гипса. В этих датчиках размещено 2 электрода, подключенных непосредственно к счетчику. Электрическое сопротивление материала находится в зависимости от наличия в нем жидкости, что, соответственно, измеряет уровень увлажнения земли. В грунте проделывают отверстия до нужной глубины с последующим размещением в них датчиков. Важным является близкий контакт между чувствительным элементом, а также землей (это необходимый фактор для всех влагомеров).

Современные виды датчиков применяют грануловидный материал, окружающий специальную мембрану и перфорированные крышки, которые произведены из стали либо ПВХ. Таким образом достигается более долгий период эксплуатации датчиков, быстрейший отклик, а также точнейшие измерения. Эти датчики допустимо применять в системах полива, которые контролируются автоматически. Приборы для определения влаги, оборудованные диэлектрическими зондами, указаны в таблице.


Измерения с применением диэлектрических зондов TDR и EDR

Определение показателей увлажненности земли при помощи этого способа осуществляется посредством исчисления диэлектрической среды, зависящей от увлажненности грунта. Проверка наличия влаги в земле провоцирует смену ее диэлектрической постоянной, а это дает возможность вымерять соотношение между данными параметрами. Достоинством этого вида датчика является способность передавать измерения без участия проводов.

На сегодняшний день представлены также приспособления, зонды которых постоянно находятся в трубе на необходимой глубине. Показания в этом случае снимаются автоматически, а потом передаются наблюдателю. Соответственно, и цена данных приборов на порядок выше. Приборы для измерения при помощи почвенных тензиометров указаны в таблице.

Название Описание
Комплект тензиометров Thetaprobe Многофункциональное приспособление, применяемое для разнообразных исследований с тензиометрами разных видов на глубине до 90 сантиметров
Тензиометр DCAT 11 компании DataPhysics Instruments GmbH Измеряет поверхностное, а также межфазное натяжение жидкостей
Тензиометры BPA – 2S Дает возможность определять динамическое поверхностное натяжение

Метод тензиометра для измерения влажности

Тензиометр состоит из керамического фильтра, пластиковой трубы и вакуумного манометра, непосредственно после заполнения водой который опускают в землю для исчисления давления. Жидкость передвигается по керамическому элементу, что вызывает смену давления в трубе, а также изменения показаний счетчика. После процедуры гидратации либо осадков в земле вода не попадает в трубку, до момента смещения потенциалов между грунтом и тензиометром. Приспособления представляют собой трубки, доступные для приобретения, разной длины для исчисления показателей влаги в земле на разнообразных глубинах.

Приборы применяются, как правило, для определения начала, а также конца полива. Их предпочтительнее размещать на разные глубины, к примеру 20 или 40 сантиметров. Исходя из результатов исследования прибора, возможно измерить период начала полива (основываясь на данных устройства, размещенного близко к поверхности), а также время конца орошения (согласно показаниям приспособления, находящегося глубже).

Как повысить увлажненность грунта

Для увеличения влажности, например в теплице, следует производить опрыскивание культур, дорожек, тепловых приборов, а также стеклянного потолка и увеличить количество орошений. Помимо шлангового полива, на сегодняшний день в хозяйствах используется: дождевание, подпочвенное орошение и капельный полив. Наиболее популярный вид – это дождевание, в данном случае одновременно поливаются растения, понижается температура листвы, а также испарения, ликвидируется перегрев культур.

Совет #2. Для уменьшения уровня увлажненности земли в тепличной конструкции следует осуществить вентиляцию, поднять температурные показатели воздуха, урезать количество и объем поливов .

Влияет ли регион на увлажненность грунта


Нормы орошений исчисляются в литрах на метр квадратный либо в кубометрах на один га.

Для Подмосковья характерны подзолистые, дерново-подзолистые почвы, серые лесные, черноземы. Для территории Урала – глинистые, песчаные и подзолистые. В Сибири распространены подзолистые почвы. В Поволжье – черноземы и подзолистые, а в Ленинградской области зачастую встречаются подзолистые грунты.

Как рассчитать оптимальный период и размер полива

Множество проведенных исследований указывают на то, что самыми оптимальными показателями потребности растительного организма в воде можно назвать физиологическое состояние данного растения, сосущая сила листвы, концентрация и осмотическое давление клеточного сока и пр.:

  • зачастую практикуется для определения поливных сроков визуальный способ, то есть по внешним признакам;
  • следующий ориентировочный метод – это измерение увлажненности грунта на ощупь;
  • примерные нормы орошения возможно определить при помощи суммарной радиации. Последняя в данном случае измеряется в периодах между процедурами полива.

Схема полива для разной влажности грунта


В знойную и солнечную погоду рекомендуется осуществлять частые, а также обильные орошения, в прохладное время и в зимний сезон поливы уменьшаются.

Влажность земли относится к главным факторам плодородия. Рассмотрим главные требования к орошению грунта на различных этапах культивации овощных, а также плодовых культур:

  • умеренный полив – нельзя допускать переувлажнения, а также полного высыхания грунта;
  • опрыскивание листы во время цветения – обильный полив осуществляется в летнее время, после окончания цветения в период покоя растения проводится редко;
  • опрыскивание в теплые сезоны – земле летом требуется обильный полив, уменьшаемый в холодное время.

Ответы на распространенные вопросы

Вопрос №1. Как определить, достаточно ли в земле влаги?

Нужно взять в руку немного земли и сжать ее, если влага между пальцев не проступила, раскройте ладонь. Комок почвы не распался – это означает, что уровень влажности удовлетворительный.


Норма применяемого полива находится в зависимости от сезона, растения, возраста культуры, степени освещения, а также водно-физических особенностей грунта.

Вопрос №2. Как можно повысить влажность почвы в тепличной конструкции?

В данном случае необходимо увеличить полив, немного понизить температуру, а также осуществлять опрыскивание растений, почвы и дорожек водой.

Вопрос №3. В какой период роста растений им необходимо наибольшее количество влаги?

Во время вегетации растительные организмы больше всего нуждаются в интенсивном поливе.

Вопрос №4. Какой метод измерения влажности грунта является оптимальным?

Наиболее простыми и популярными являются термостатно-весовой, а также органолептический методы.

Ошибки садоводов, приводящие к заболачиванию почвы

  • Основная оплошность заключается в неотрегулированном орошении земель.
  • Еще следует отметить отсутствие известкования и корректной подкормки почв, подверженных заболачиванию.
  • Также садоводы зачастую забывают об организации дренажной системы. Все это в целом негативно сказывается на качестве грунта.

Как таковые понятия нехватки влаги либо переувлажнения довольно относительны. Повышенная влажность грунта в сочетании с масштабными минеральными подкормками, а также благоприятными показателями температуры активирует интенсивный фотосинтез, стремительный рост культур и увеличение общей биомассы. Соответственно, при уменьшении температуры аналогичное увеличенное увлажнение влияет уже негативно. Как видим, такой параметр, как влажность почвы очень важен в процессе выращивания любой культуры на различных типах грунтов и в различных климатических широтах.

Урожайность культур напрямую зависит от своевременного и оптимального увлажнения почвы. Контроль влажности почвы – важный момент в определении необходимости полива.

Методы контроля влажности почвы

1. Весовой метод с сушкой пробы грунта в термостате при 105 градусах до постоянного значения массы на протяжении 8 часов. Разница веса образца грунта до и после сушки определяет содержание влаги.

2. Ускоренный весовой метод сушки с использование спиртового обжига почвы. Проба грунта смачивается спиртом и обжигается при дефиците кислорода в специальных бюксах. Органика почвы при сгорании спирта практически не выгорает (расхождения до 1,5%). О содержании влаги судят по разнице масс пробы до и после обжига.

3. Тензиометрический метод определения влажности почвы основан на особенности грунта всасывать из окружающей среды влагу до полного насыщения.

Прибор тензиометр представляет собой замкнутый сосуд с определенным объемом воды, соединенным с емкостью, где располагается проба почвы. Одна из стенок прибора выполнена в виде мембраны, способной отклонятся под действием разряжения всасывающей силы грунта. Степень отклонения мембраны от нулевой отметки является индикатором влажности образца почвы. Метод лабораторный для точной оценки влажности проб.

4. Метод определения влажности в зависимости от степени отражения электромагнитной волны влажной поверхностью. Молекулы воды способны поглощать часть высокочастотной энергии электромагнитной волны. Степень ее отражения изменяется в зависимости от степени влажности материала и измеряется датчиком, а процессор высчитывает показатель в зависимости от вида измеряемого материала.

Влагомер почвы МГ – 44 работает по такому методу и предназначен для профессиональной работы в гидрологии. Кроме почвы может измерять влажность различных сыпучих продуктов (зерна, щебня, песка), а также пастообразных продуктов (масла, маргарина) и других материалов. Прибор прост в работе, надежен, имеет жидкокристаллический дисплей. Точность измерения до 1% в диапазоне влажности 0 – 100%.

5. Электровлагомерный метод основан на измерении изменения электродвижущей силы постоянного тока при прохождении участка грунта между двумя металлическими электродами.

При разной влажности грунта электродвижущая сила тока будет разной. Метод косвенный, погрешность допуска измерения до 5%. На степень точности измерения влажности влияет наличие солей в грунте.

Приборы на базе этого метода разработаны для измерений влажности в полевых условиях для более точного определения сроков полива орошаемых участков при температуре почвы 1 – 50 градусов. Время измерения – 1 минута.

Бытовые измерители влажности почвы

На основе электровлагомерного метода измерения влажности почвы в настоящее время производятся бытовые измерители для огородников и садоводов-любителей.

Самый простой индикатор влажности почвы имеет щуп для заглубления и измерительный блок с элементом питания. На градуированной шкале механический индикатор (стрелка) покажет какая влажность почвы на определенной глубине в выбранном месте.

Более сложный прибор конструктивно может быть выполнен в виде многофункционального устройства (4 в одном). На базе одной конструкции установлены модули определения влажности почвы, ее температуры, кислотности и степени освещенности.

Удобны модели с жидкокристаллическим дисплеем и микропроцессором, способным осуществлять измерение и расчет показателей в зависимости от введенных параметров. Примером таких устройств могут служить анализаторы почвы РН300 или KC-300.

Прибор KC-300 весит всего 75 г, имеет жидкокристаллический дисплей с подсветкой и щуп (зонд) длинной 20 см. Питание от одной батарейки 9В, 5 уровней измерения влажности почвы, 9 уровней освещенности, 12 уровней кислотности.

Народные методы определения влажности почвы

Для определения влажности почвы без приборов в теплице или участке с большим содержанием органики можно взять горсть земли с глубины 10 – 20 см и сжать ее в руке.

Если после раскрытия ладони на коме остаются очертания пальцев, то можно предположить, что влажность такого грунта около 70%. При рассыпании земляного кома почва будет иметь влажность менее 60%, а выступающая влага на коме будет говорить о влажности почвы выше 80%.

На участках открытого грунта ком при влажности менее 60% формироваться не будет и лишь на тяжелых суглинках он может сохранять очертания.

Если шар можно сформировать, но он при легком надавливании разваливается на части, то влажность такой почвы находится в пределах 70 – 75%.

Более плотный шар, смачивающий или местами увлажняющий фильтровальную бумагу при касании, свидетельствует о наличии влаги в такой почве на уровне 80 – 85%.

Скатывание горсти земли в плотный вязкий ком на суглинистой почве свидетельствует о влажности выше 90%, а на супесчаных грунтах ком такой влажности будет еще и сочиться влагой.

Еще несколько простых приемов для определения общей готовности почвы к весенней обработке.

Готовая к обработке почва после вспашки в солнечную погоду просыхает (светлеет) на двух третях гребня после обработки участка плугом без боронования.

Заостренная палка после протягивания по вспаханному участку практически не пачкается о грунт, а почва крошится от ее воздействия.

Взятая с глубины 5 – 10 см горсть земли сжимается в ладонях для формирования кома и бросается с высоты 1 м на землю.
Если ком рассыпается частично, то можно начинать посадки.
Если рассыпается практически полностью, то почва уже начинает пересыхать.
Если ком остается целым со следами деформации – стоит подождать с севом.