Определение потерь давления в воздуховодах онлайн. Пример подбора вентиляторов для системы вентиляции. Нужный диаметр диафрагмы для воздуховодов

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля

, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где - сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов

Такие потери пропорциональны динамическому давлению pд = ρv2/2, где ρ — плотность воздуха, равная примерно 1,2 кг/м3 при температуре около +20 °C, а v — его скорость [м/с], как правило, за сопротивлением. Коэффициенты пропорциональности ζ, называемые коэффициентами местного сопротивления (КМС), для различных элементов систем В и КВ обычно определяются по таблицам, имеющимся, в частности, в и в ряде других источников. Наибольшую сложность при этом чаще всего вызывает поиск КМС для тройников или узлов ответвлений, поскольку в этом случае необходимо принимать во внимание вид тройника (на проход или на ответвление) и режим движения воздуха (нагнетание или всасывание), а также отношение расхода воздуха в ответвлении к расходу в стволе Loʹ = Lo/Lc и площади сечения прохода к площади сечения ствола fnʹ = fn/fc. Для тройников при всасывании нужно учитывать еще и отношение площади сечения ответвления к площади сечения ствола foʹ = fo/fc. В руководстве соответствующие данные приведены в табл. 22.36-22.40.

Однако, при больших относительных расходах в ответвлении КМС меняются весьма резко, поэтому в этой области рассматриваемые таблицы вручную интерполируются с трудом и со значительной погрешностью. Кроме того, в случае использования электронных таблиц MS Excel опять-таки желательно иметь формулы для непосредственного вычисления КМС через отношения расходов и сечений. При этом такие формулы должны быть, с одной стороны, достаточно простыми и удобными для массового проектирования и использования в учебном процессе, но, в то же время, не должны давать погрешность, превышающую обычную точность инженерного расчета. Ранее подобная задача была решена автором применительно к сопротивлениям, встречающимся в водяных системах отопления . Рассмотрим теперь данный вопрос для механических систем В и КВ. Ниже приведены результаты аппроксимации данных для унифицированных тройников (узлов ответвлений) на проход. Общий вид зависимостей выбирался, исходя из физических соображений с учетом удобства пользования полученными выражениями при обеспечении допустимого отклонения от табличных данных:

❏ для приточных тройников, при Loʹ ≤ 0,7 и fnʹ ≥ 0,5:а при Loʹ ≤ 0,4 можно пользоваться упрощенной формулой:

❏ для вытяжных тройников:

Нетрудно заметить, что относительная площадь прохода fnʹ при нагнетании или соответственно ответвления foʹ при всасывании влияет на КМС одинаковым образом, а именно с увеличением fnʹ или foʹ сопротивление будет уменьшаться, причем числовой коэффициент при указанных параметрах во всех приведенных формулах один и тот же, а именно (-0,25). Кроме того, и для приточных, и для вытяжных тройников при изменении расхода воздуха в ответвлении относительный минимум КМС имеет место при одинаковом уровне Loʹ = 0,2. Данные обстоятельства говорят о том, что полученные выражения, несмотря на свою простоту, в достаточной мере отражают общие физические закономерности, лежащие в основе влияния исследуемых параметров на потери давления в тройниках любого типа. В частности, чем больше fnʹ или foʹ, т.е. чем ближе они к единице, тем меньше меняется структура потока при прохождении сопротивления, а значит, и меньше КМС. Для величины Loʹ зависимость является более сложной, но и здесь она будет общей обоих режимов движения воздуха.

Представление о степени соответствия найденных соотношений и исходных значений КМС дает рис. 1, где показаны результаты обработки таблицы 22.37 для КМС унифицированных тройников (узлов ответвлений) на проход круглого и прямоугольного сечения при нагнетании. Примерно такая же картина получается и для аппроксимации табл. 22.38 с помощью формулы (3). Заметим, что, хотя в последнем случае речь идет о круглом сечении, нетрудно убедиться, что выражение (3) достаточно удачно описывает и данные табл. 22.39, относящиеся уже к прямоугольным узлам.

Погрешность формул для КМС в основном составляет 5-10 % (максимально до 15 %). Несколько более высокие отклонения может давать выражение (3) для тройников при всасывании, но и здесь это можно считать удовлетворительным с учетом сложности изменения сопротивления в таких элементах. Во всяком случае, характер зависимости КМС от влияющих на него факторов здесь отражается очень хорошо. При этом полученные соотношения не требуют никаких иных исходных данных, кроме уже имеющихся в таблице аэродинамического расчета. В самом деле, в ней в явном виде должны быть указаны и расходы воздуха, и сечения на текущем и на соседнем участке, входящие в перечисленные формулы. Особенно это упрощает вычисления при использовании электронных таблиц MS Excel.

В то же время формулы, приведенные в настоящей работе, весьма просты, наглядны и легко доступны для инженерных расчетов, особенно в MS Excel, а также в учебном процессе. Их применение позволяет отказаться от интерполяции таблиц при сохранении точности, требуемой для инженерных расчетов, и непосредственно вычислять КМС тройников на проход при самых разнообразных соотношениях сечений и расходов воздуха в стволе и ответвлениях. Этого вполне достаточно для проектирования систем В и КВ в большинстве жилых и общественных зданий.

1. А.Д. Альтшуль, Л.С. Животовский, Л.П. Иванов. Гидравлика и аэродинамика. — М.: Стройиздат, 1987.
2. Справочник проектировщика. Внутренние санитарно-технические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 2 / Под ред. Н.Н. Павлова и Ю.И. Шиллера. — М.: Стройиздат, 1992.
3. О.Д. Самарин. О расчете потерь давления в элементах систем водяного отопления // Журнал С.О.К., №2/2007.

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый или . Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Определение скорости движения воздуха в воздуховодах:


V= L / 3600*F (м/сек)

где L - расход воздуха, м 3 /ч;
F - площадь сечения канала, м 2 .

Рекомендация 1.
Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.
В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:
Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м 3 /ч. Принимаем диаметр воздуховода равным 200 мм, скорость - 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м 3 /ч. Принимаем диаметр воздуховода равным 250 мм, скорость - 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м 3 /ч.
Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость - 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Определение потерь давления в воздуховодах.

Определение потерь давления в обратном клапане.

Подбор необходимого вентилятора.


Определение потерь давления в шумоглушителях.

Определение потерь давления на изгибах воздухуводов.


Определение потерь давления в диффузорах.



Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Вернуться к оглавлению

С чего начинать?

Диаграмма потери напора на каждый метр воздуховода.

Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.

Вернуться к оглавлению

Порядок вычислений

Общая формула расчета потерь давления в воздуховодах для всей вентиляционной системы выглядит следующим образом:

H B = ∑(Rl + Z), где:

  • H B — потери давления во всей системе воздуховодов, кгс/м²;
  • R — сопротивление трению 1 м воздухопровода эквивалентного сечения, кгс/м²;
  • l — протяженность участка, м;
  • Z — величина давления, теряемого воздушным потоком в местных сопротивлениях (фасонных элементах и дополнительном оборудовании).

Примечание: значение площади поперечного сечения воздуховода, участвующее в расчете, принимается изначально как для круглой формы канала. Сопротивление трению для каналов прямоугольной формы определяется по площади сечения, эквивалентному круглому.

Расчет начинают от самого отдаленного участка №1, затем переходят ко второму участку и так далее. Результаты вычислений по каждому участку складываются, о чем и говорит математический знак суммирования в расчетной формуле. Параметр R зависит от диаметра канала (d) и динамического давления в нем (Р д), а последнее, в свою очередь, зависит от скорости движения воздушного потока. Коэффициент абсолютной шероховатости стенок (λ) традиционно принимается как для воздухопровода из оцинкованной стали и составляет 0,1 мм:

R = (λ / d) Р д.

Пользоваться этой формулой в процессе расчета потерь давления не имеет смысла, так как значения R для различных скоростей воздуха и диаметров уже просчитаны и являются справочными величинами (Р. В. Щекин, И.Г. Староверов — справочники). Поэтому просто необходимо найти эти значения в соответствии с конкретными условиями перемещения воздушных масс и подставить их в формулу. Еще один показатель, динамическое давление Р д, который связан с параметром R и участвует в дальнейшем подсчете местных сопротивлений, тоже величина справочная. Учитывая эту связь между двумя параметрами, в справочных таблицах они приводятся совместно.

Значение Z потерь давления в местных сопротивлениях рассчитывают по формуле:

Z = ∑ξ Р д.

Знак суммирования обозначает, что нужно сложить результаты расчета по каждому из местных сопротивлений на заданном участке. Кроме уже известных параметров, в формуле присутствует коэффициент ξ. Его величина безразмерна и зависит от вида местного сопротивления. Значения параметра для многих элементов вентиляционных систем посчитаны либо определены опытным путем, поэтому находятся в справочной литературе. Коэффициенты местного сопротивления вентиляционного оборудования зачастую указывают сами производители, определив их значения опытным путем на производстве или в лаборатории.

Вычислив длину участка №1, количество и вид местных сопротивлений, следует правильно определить все параметры и подставить их в расчетные формулы. Получив результат, переходить ко второму участку и далее, до самого вентилятора. При этом не следует забывать о том участке воздухопровода, который расположен уже за вентиляционной установкой, ведь напора вентилятора должно хватить и на преодоление его сопротивления.

Закончив расчеты по самой протяженной ветви, производят такие же по соседней ветке, потом по следующей и так до самого конца. Обычно эти все ветви имеют много общих участков, поэтому вычисления пойдут быстрее. Целью определения потерь давления на всех ветвях есть их общая увязка, ведь вентилятор должен распределить свой расход равномерно по всей системе. То есть в идеале потери давления в одной ветви должны отличаться от другой не более чем на 10%. Простыми словами, это значит, что самое ближнее к вентилятору ответвление должно иметь самое высокое сопротивление, а дальнее — самое низкое. Если это не так, рекомендуется вернуться к пересчету диаметров воздуховодов и скоростей движения воздуха в них.