Типы и марки нивелиров. Оптические нивелиры, классификация и их устройство. Лазерные и кодовые приборы для геометрического

Классификация нивелиров производится:

По точности на три типа - высокоточные Н - 05, точные Н - 3 и технические Н - 10. Цифра указывает значение средней квадратической ошибки в мм определения превышений на 1 км двойного хода, т.е. 0.5 мм, 3 мм, 10 мм.

По конструкции (способу приведения визирной оси в горизонтальное положение) нивелиры с уровнем при трубе и нивелиры с компенсатором. Если есть компенсатор, то к обозначению добавляется буква К, а если есть также лимб, то Л: Н -10КЛ.

Установлено, что применение приборов с компенсаторами повышает производительность работ на 10-15% и потому наблюдается тенденция замены нивелиров с уровнями - нивелирами с компенсаторами. Однако высокоточные нивелиры, по прежнему, выпускаются с уровнями.

Основные части нивелиров: зрительная труба с внутренней фокусировкой с увеличением 20-50 х; кремальера; закрепительный и наводящий винты; круглый уровень; либо компенсатор, либо цилиндрический уровень, наглухо скрепленный с трубой. Тогда имеется элевационный винт для приведения пузырька уровня в нуль пункт. Изображение половинок пузырька передается в поле зрения трубы.

Перед взятием отсчетов пузырек приводится в нуль-пункт элевационным винтом (рис. 4.5). При работе нивелиром с компенсатором прибор должен быть предварительно приведен в горизонтальное положение по поверенному круглому уровню.

Рис. 4.5. Поле зрения трубы нивелира с цилиндрическим

контактным уровнем.

Перед началом производственных работ с нивелиром, необходимо выполнить исследования, поверки и при необходимости юстировку. Порядок выполнения исследований, поверок и юстировок приводится в паспортах приборов.

Нивелирные рейки

Нивелирные рейки представляют собой деревянные бруски шириной до 10 см, толщиной 2-3 см и высотой 3-4 м (рис. 4.6). Обычно рейки складные на шарнирах или раздвижные. Но бывают и цельные рейки (для точного нивелирования). Нижняя часть рейки называется пяткой - от нее начинается отсчет делений. Рейки делаются двухсторонними: на одной стороне нанесены черные деления (черная сторона), на другой - красные (красная сторона).



Рис. 4.6. Нивелирные рейки. а) – цельная; б) – складная; в) –

раздвижная.

На черной стороне нуль совмещен с пяткой, на красной - пятка имеет некоторый отсчет, больший 4 м (максимальная высота реек). Обычно он равен 4687 или 4787 мм. При нивелировании черная сторона является основной, а красная - контрольной. Разность отсчетов по черным и красным сторонам рейки должна быть равна разности пяток. Расхождение в разности отсчетов допускается в пределах точности нивелирования (для технического 5 мм). Рейки имеют ручки для удержания и иногда - круглые уровни для приведения их точно в вертикальное положение.

Выпускаются следующие виды реек:

РН-05 инварная односторонняя, трехметровая, деления через 0.5 см - для высокоточного нивелирования;

РН-3 деревянная двухсторонняя, длиной 1500, 3000, 4000 мм для нивелирования с погрешностью 3 мм на 1 км хода;

РН-10 деревянная двухсторонняя длиной 4000 мм для нивелирования с погрешностью 10 мм на 1 км хода. При нивелировании рейки устанавливаются на верхний ровный срез деревянных кольев, вбитых в землю, металлические башмаки, костыли или на "твердые" точки местности (рельсы, бордюры и т.п.).

Лазерные и кодовые приборы для геометрического

Нивелирования

Лазерные нивелиры - визуализируют визирный луч, образуя плоскость вращения нивелира (рис. 4.7). При пересечении плоскостью вращения вертикальной специальной рейки, на них высвечивается горизонтальная линия, от которой отсчитываются превышения. Используются визуальная или фотоэлектрическая индикация. Один нивелир обслуживает сразу несколько реек. Выпускаются: лазерный визир ЛВ5М, лазерная приставка ПЛ-1, лазерный нивелир с вращающимся лучом Геоплан 300 (скорость 12 об/мин).

Кодовые нивелиры имеют встроенную микро-ЭВМ и используют рейки с закодированными делениями. После ввода информации в ЭВМ об отметках начального и конечного реперов, выполняют наведение на рейки и нажатие клавиши "отсчет", после чего все вычисления выполняются автоматически. Используется кодовый нивелир RENI 002A. Погрешность 0.2 мм на 1 км хода.

Рис. 4.7. Лазерный нивелир. а) общий вид; б) – отсчет по рейке; в) – положение нивелира для развертки горизонтальной плоскости.

Нивелир – геодезический прибор для измерения превышений между двумя точками местности посредством горизонтального визирного луча. Нивелиры обозначают буквой Н,. Нивелиры разделяются на оптические, лазерные и электронные (цифровые). В оптических нивелирах горизонтальной линией является мнимый визирный луч, в лазерных – видимый лазерный луч, создаваемый источником излучения, в цифровых – визирный луч. По точности оптические нивелиры делятся на три группы: высокоточные - Н-0,5, точные Н-3 и технические – Н-10

По способу приведения визирного луча в горизонтальное положение различают нивелиры с уровнем и с компенсатором. Нивелиры изготавливают с лимбом для измерения горизонтальных углов и без него. В шифре нивелира арабскими цифрами перед буквой Н обозначают номер модели, цифрами после нее – точность в миллиметрах и буквами - конструктивные особенности – наличие компенсатора К и лимба Л, например, 2Н10КЛ расшифровывается: вторая модель нивелира точности 10мм на 1км двойного хода с компенсатором и лимбом. У лазерных нивелиров ставятся буквы НЛ или ВЛ (визир лазерный). В шифре нивелира наличие уровня не указывается, так как во всех нивелирах горизонтальная линия создается с помощью уровня.

В настоящее время высокоточные нивелиры выпускают только с уровнем, а точные и технические - с уровнем или с компенсатором. Все нивелиры с уровнем являются глухими (труба наглухо скреплена с вертикальной осью вращения) и с элевационным винтом, наклоняющим трубу в небольших пределах. Зрительные трубы отечественных нивелиров, изготовленных после 1990г., имеют прямое изображение предметов, а выпущенные ранее – обратное. Зарубежные фирмы выпускают в основном нивелиры с компенсатором и зрительными трубами прямого изображения. Технические нивелиры предназначены для нивелирования технической точности. В комплект нивелира типа Н-10 входят шашечные нивелирные рейки типа РН-10 и штатив типа ШР-120.

7.4.2. Устройство нивелиров с уровнем Н-3

Основными частями оптических нивелиров являются: зрительная труба, цилиндрический уровень или компенсатор, круглый уровень и подставка с тремя подъемными винтами. Зрительная труба с уровнями располагается на опорной плите, ось вращения которой входит в трегер (подставку). Точный нивелир Н-3 является нивелиром с цилиндрическим уровнем и элевационным винтом, состоит из нижней неподвижной части и верхней подвижной. Внизу неподвижной части имеется пружинящая пластина, с резьбовой втулкой в середине для скрепления нивелира со штативом становым винтом. В пластину входят нижние части подъемных винтов, а верхние - в трегер. В центре трегера имеется втулка, в которую входит ось вращения верхней части нивелира. Верхняя часть нивелира и подставка неразъемные. На основании верхней части нивелира - опорной плите - укреплены зрительная труба и круглый уровень. Корпус зрительной трубы в нижней части имеет два выступа: один из них (в объективной части) шарнирно скреплен с опорной плитой, другой (в окулярной части) покоится на элевационном винте, вращением которого окулярный конец зрительной трубы может перемещаться в вертикальной плоскости в небольших пределах и наклонять зрительную трубу. Корпус зрительной трубы с левой стороны имеет выступ, в котором расположены цилиндрический уровень и призменное устройство, передающее изображение концов пузырька уровня в поле зрения трубы. Ампула цилиндрического уровня имеет термостатирующее устройство, благодаря которому длина пузырька при колебаниях температуры воздуха остается практически неизменной. Со стороны окуляра цилиндрический уровень имеет четыре исправительных винта, закрытых круглой пластинкой, закрепленной винтом. С правой стороны корпуса трубы имеется кремальера для фокусирования. Сверху трубы имеется мушка для приближенного наведения на рейку. Зрительная труба с окуляром и объективом представляет собой телескопическую систему с внутренней фокусировкой и дает обратное изображение предмета. В окулярной части трубы помещена сетка нитей, награвированная на стеклянной пластинке. В плоскости сетки нитей получается изображение рейки. Сетка нитей имеет четыре исправительных винта, закрытых навинчиваемой на окулярную часть крышкой Круглый уровень служит для приближенной установки оси вращения нивелира в отвесное положение подъемными винтами. Снизу уровня имеются три исправительных винта.

В настоящее время в различных строительных и ремонтных работах все чаще используются точные современные измерительные приборы - нивелиры. Эти приборы позволяют измерять разницу в высоте между двумя отдаленными друг от друга точками пространства, весь такой процесс измерения называется нивелированием. У профессионалов принято различать гидростатическое, тригонометрическое, барометрическое и геометрическое нивелирование.

Нивелиры также различаются между собой. По типу конструкции и принципу работы выделяют широко известные оптические нивелиры, электронные (они же «цифровые») и лазерные нивелиры.

Оптический нивелир представляет собой специальный геодезический прибор для геометрического нивелирования, в корпусе которого находится зрительная труба с окуляром, прикрепленная к подставке и опорной площадке при помощи системы винтов, позволяющих ей вращаться в разные стороны по горизонтали. Подъемные винты оптического нивелира служат для укрепления прибора в рабочем положении, а для осуществления горизонтального движения при взятии точки отсчета используется элевационный винт. В современных оптических нивелирах для того, чтобы удерживать горизонтальную визирную ось используют автоматические компенсаторы, что позволяет увеличить точность и скорость производимых измерений.

Электронные нивелиры являются современными геодезическими приборами, позволяющими получать наиболее точные результаты измерений. В их конструкции и принципе работы удачно сочетаются функции точного оптического нивелира с новейшими цифровыми технологиями используемого запоминающего устройства со встроенным программным обеспечением, позволяющим производить оперативную обработку результатов производимых измерений и фиксирующим результат с высокой степенью точности.

Наибольшей популярностью сегодня пользуются лазерные нивелиры , используемые при проведении различных строительных работ. Широта сферы применения и простота использования этих приборов объясняется особенностями конструкции и принципа работы, на котором функционируют все лазерные нивелиры.

Принцип работы этих приборов кардинально отличается от предыдущих моделей оптического и электронного нивелиров. Основа их конструкции - лазерные излучатели, подающие лучи лазера через оптическую призму в открытое пространство. При этом два, исходящих из нивелира лазерных луча образуют во внешнем пространстве две идеально ровные перпендикулярно пересекающиеся плоскости. Ориентируясь на эти плоскости, можно выравнивать различные поверхности (стены, полы, дверные проемы) и выполнять другие виды ремонта. Работающие по такому принципу нивелиры называются статичными или, иначе - позиционными.

Существует и другой тип подобных лазерных измерительных приборов - ротационные нивелиры . Работают они быстро благодаря использованию электродвигателя, вращающего лазерный излучатель на 360 градусов. Вместо призм в них используется фокусирующая линза, которая создает видимую глазом точку во внешнем пространстве, превращающуюся в идеально прямую линию между нивелиром и поверхностью. Такие нивелиры больше всего подходят для отделочных ремонтных работ, таких как поклейка обоев, выкладка плитки, установка плинтусов и т.д.

Еще несколько статей из раздела " "

В зависимости от точности нивелирование делят на четыре класса: I, II, III, IV, составляющие государственную опорную высотную сеть, и техническое нивелирование, выполняемое обычно при строительстве и при создании съемочного обоснования.

Нивелирные ходы I класса прокладывают по железным и шоссейным дорогам в различных направлениях страны. С целью излучения движения земной коры производится повторное нивелирование ходов I класса не реже чем через 25 лет.

Ходы нивелирования II класса образуют полигоны с периметром 500-600 км, опирающиеся на пункты нивелирования I класса. Нивелирование II класса прокладывают преимущественно по железным, шоссейным и улучшенным грунтовым дорогам, а также вдоль больших рек.

Нивелирование I и II классов, примыкающее к морям, связывают по высоте с морскими водомерными постами (мареографами). Нивелирные ходы I и II классов прокладывают в прямом и обратном направлениях.

Ходы нивелирования III класса прокладывают между пунктами I и II классов, причем нивелируют их в прямом и обратном направлениях. Нивелирование IV класса является сгущением нивелирной сети III класса и служит непосредственным высотным обоснованием для топографических съемок.

Для решения различных задач инженерного характера, например при строительстве городов, крупных поселков и промышленных предприятий, инженерных сооружений (гидроэлектростанции, водопровод, канализация, оросительные и осушительные системы и др.) допускается проложение нивелирных ходов II, III и IV классов по схеме, удобной для строительства, но с обязательной привязкой к государственной нивелирной сети, чтобы обеспечить проложение всех нивелировок в стране в единой государственной системе высот.

Знаки нивелирные

Знаки, закладываемые с целью отметить и закрепить на местности пункты геометрического нивелирования. Существуют следующие виды 3. н.

· Фундаментальный репер I типа - железобетонный монолит в виде четырехгранной усеченной пирамиды с основанием-плитой на глубине не менее 2,5 м от поверхности земли и верхней гранью на глубине 1 м. В плиту основания и верхнюю грань заделывают металлические марки со сферической головкой.



· Грунтовый репер, состоящий из железной трубы или отрезка рельса, заделываемых в бетонные монолиты; верхний конец трубы должен быть на глубине 1 м от поверхности для фундаментального репера II типа и 30 см для обычных реперов. В верхний конец трубы и верхнюю грань монолита заделываются марки со сферической головкой.

· Стенные чугунные марки с углублением в центре для штифта подвесной рейки.

· Стенные чугунные реперы, отличающиеся от марок тем, что имеют выступ для установки на него рейки.

44. Нивелиры и рейки

Нивелир – геодезический прибор, используемый в геодезии, при помощи которого строятся нивелирная сеть и прокладываются нивелирные ходы, являющиеся основой топографических съемок и геодезических измерений, с целью определения превышения точек земной поверхности относительно друг друга.

Государственная нивелирная сеть в зависимости от точности подразделяется классы: I, II, III и IV.
Нивелирная сеть I класса строится отдельными линиями, прокладываемыми преимущественно вдоль железных дорог. Она обеспечивает территорию государства единой системой высот. При нивелировании сети I класса используют нивелиры высокой точности. Такие геодезические приборы могут быть снабжены микрометром с ценой деления 0,05 мм.

Нивелирная сеть II класса, опираясь на пункты сетей нивелирования I класса, прокладывается, как правило, по железным, шоссейным и другим улучшенным дорогам в виде полигонов с периметром 500-600 км. При выполнении геодезических измерений такой точности используют высокоточные нивелиры и штриховые рейки с инварной полосой.

Нивелирная сеть III класса строится внутри полигонов нивелирования I и II классов, как отдельными линиями, так и системами ходов с узловыми точками. При этом полигон II класса делится на 6-9 полигонов III класса с периметрами 150-200 км каждый. Для получения пунктов нивелирования такого класса применяют точные уровенные нивелиры. Рейки применяют трехметровые шашечные двусторонние с сантиметровыми делениями.

Построение нивелирных ходов IV класса осуществляется отдельными линиями на исходные пункты, или системами ходов с узловыми точками. Пункты нивелирования IV класса служат непосредственным обоснованием топографических съемок и основой для различного рода строительства.

Нивелирование – вид геодезических работ, при которых определяются разности высот точек (превышений) на поверхности земли. При чем существует несколько методов ведения таких работ:

· геометрическое нивелирование;

· тригонометрическое нивелирование;

· гидростатическое нивелирование;

· барометрическое нивелирование.

Самый распространенная методика - это геометрическое нивелирование. Способ геометрического нивелирования заключается в непосредственном определении превышений с помощью специального прибора – нивелира, дающего горизонтальную ось визирования, и нивелирных реек с градуировкой, вертикально установленных в данных точках земной поверхности.

Основные составляющие нивелира:

· устройство наведения - зрительная труба;

· алидадная часть, цилиндрический уровень или заменяющий его компенсатор,

· цилиндрический уровень или заменяющий его компенсатор,

· подставка нивелира, связанные с ней ось и три подъемных винта.

Данные геодезические приборы производят в различном исполнении: оптические, электронные, лазерные. Оптический нивелир – наиболее востребованный геодезический прибор, широко используемый в строительстве; электронный (цифровой) нивелир – с электронным устройством и программой для обработки результатов измерения, используется для высокоточных измерений; лазерный нивелир (например, ротационный) – в основе имеет вращающийся лазерный луч, не требует высоких профессиональных познаний при пользовании.

Перед началом полевых измерений общим осмотром, поверками и исследованиями убеждаются в пригодности нивелира для производства работ определенной точности.

Общим осмотром устанавливают состояние геодезического прибора в отношении исправности уровней, подъемных, исправительных, элевационных, зажимных и наводящих винтов, штатива и комплектности принадлежностей. Особое внимание при этом уделяют чистоте оптики, плавному вращению прибора относительно вертикальной оси, четкости изображения сетки нитей и пузырька контактного уровня.

Поверкой нивелира выявляют отступления от требований к взаимному расположению осей геодезического прибора и достаточно полно устраняют эти отклонения.

На рынке России предлагаются нивелиры производства SETL, УОМЗ, Topcon, Trimble, Sokkia и мн. др.

Работа с нивелиром не представляется возможной, конечно, без штатива и рейки для нивелира. Нивелирные рейки служат для измерения высот точек, что определяет величину превышения. Нивелирные рейки различают по материалу изготовления: инварные, алюминиевые и деревянные. Корпус большинства деревянных нивелирных реек выполняют в форме бруска длиной 3 – 4 метра из хорошо выдержанного дерева, пропитанного маслом. Лицевую сторону окрашивают светлой краской, и на ней наносят шашечные или штриховые шкалы. Нивелирные рейки изготавливают как цельные, так и складные.
В рабочем (вертикальном) положении рейка устанавливается на выступ металлического башмака. Отвесное положение рейке придается при помощи круглого уровня, привинченного к ее боковой грани. Чтобы убедиться в пригодности нивелирной рейки для нивелирования, внешним осмотром устанавливают четкость делений, отсутствие прогиба, исправность уровня и пятки.

45.Устройство нивелиров

Нивелир не имеет обыденных закрепительного (зажимного) и наводящего винтов. Наведение на рейку выполняется вращением трубы от руки по мушке 1, укрепленной на корпусе зрительной трубы. Для измерения горизонтальных углов нивелир оснащен горизонтальным кругом с ценой деления лимба; отсчеты берутся по индексу, расположенному в окне алидады, с точностью 0,1. Малая масса (1,0 кг), компактность и наличие горизонтального круга обеспечивают обширное применение нивелира в геодезических работах на строй площадках, при изыскании трасс, а также при развитии высотного обоснования крупномасштабных топографических съемок. Устройство нивелиров с компенсаторами. В настоящее время в практике получили обширное распространение нивелиры с компенсаторами (с самоустанавливающейся линией визирования). В первый раз в мировой практике нивелир с уровенным компенсатором П. Ю. Стодолкевича (НС-2) был разработан и сделан в 1945 г. в нашей стране. Внедрение компенсаторов дозволяет исключить трудозатратный процесс приведения пузырька цилиндрического уровня в нуль-пункт, что увеличивает производительность труда при нивелировании приблизительно на 60 %. Точный нивелир Н-ЗК (рис. 100, в) сконструирован на базе нивелира НС-4 (НСЗ). Он оснащен призменным компенсатором оптико-механического типа, представляющим собой две призмы, одна из которых свободно подвешена на 4 железных нитях. Компенсатор обеспечивает автоматическую установку полосы визирования в горизонтальное положение с точностью 0,5, при углах наклона оси зрительной трубы в пределах 15. Приближенное горизонтирование нивелира осуществляется по круглому уровню 1 с помощью подъемных винтов 2, имеющих укрупненный шаг резьбы. Для юстировки полосы визирования (при поверке основного геометрического условия) в оправе сети нитей имеются два юстировочных винта, дозволяющие перемещать сетку нитей в вертикальном направлении. При грубом наведении нивелира на рейку зрительная труба довольно просто поворачивается рукою и фиксируется в подходящем положении без зажимного винта. Четкое наведение трубы осуществляется вращением одной из 2-ух головок 3 нескончаемого наводящего винта. Технический нивелир Н-10К (НТС)-с самоустанавливающейся визирной осью (рис. 100,г); оснащен призменным компенсатором, обеспечивающим автоматическую установку полосы визирования в горизонтальное положение с точностью 1 при наклонах подставки в пределах +20. Для того чтоб вступил в действие компенсатор, приближенно по круглому уровню 1 с ценой деления 10 приводят вертикальную ось нивелира в отвесное положение с помощью подъемных винтов 2. Зрительная труба, включая компенсатор и остальные оптические детали, заключена в термоизоляционный кожух. Зрительная труба дает прямое изображение наблюдаемых предметов..

46.Поверки и юстировки нивелиров

По точности нивелиры в соответствии с ГОСТ 10528-76 разделяют на три типа: высокоточные (типа Н-05) , точные (типа Н-3) и технические (типа Н-10).

Цифра в обозначении нивелира указывает значение средней квадратической ошибки превышения на 1км двойного хода т км : для нивелира Н-05 т км = 0,5мм, для нивелира Н-3 т км = 3мм, для нивелира Н-10 т км = 10мм.

По конструктивным особенностям приведения визирной оси в горизонтальное положение различают нивелиры с уровнем при зрительной трубе и нивелиры с компенсатором. Для нивелиров с компенсатором к обозначению нивелира добавляется буква К. Если нивелир имеет лимб, к его обозначению добавляется буква Л.

Например, Н-3К - нивелир с компенсатором, обеспечивающий измерение превышений с ошибкой т км = 3мм; Н-10КЛ нивелир с компенсатором и лимбом, т км = 10мм.

Установлено, что применение нивелиров с компенсатором позволяет повысить производительность нивелирных работ на 10-15 %, поэтому в геодезическом приборостроении наблюдается тенденция замены нивелиров с уровнями нивелирами с компенсаторами. Однако, высокоточный нивелир Н-05 (т км = 0,5мм) в настоящее время выпускается только с уровнем.

Рис. 5. а - Н-3 и поле зрения его зрительной трубы; б - Н-3К; в - Н-10 КЛ; 1 - окуляр; 2 - зеркало; 3 - корпус; 4 - наводящий винт; 5 - лимб

На рис. 5, а представлен нивелир с уровнем Н-3. Его зрительная труба 1 с внутренним фокусированием имеет увеличение 20 x , фокусирование трубы производят при помощи кремальеры 2. Нивелир снабжен закрепительным 3 и микрометренным 4 винтами. Круглый уровень 5 служит для приведения оси вращения нивелира в отвесное положение с помощью подъемных винтов. Нивелир имеет контактный цилиндрический уровень и элевационный 6 винт. Цилиндрический уровень наглухо скреплен со зрительной трубой. Изображения концов цилиндрического уровня через систему призм передаются в поле зрения трубы. Через лупу в поле зрения зрительной трубы нивелира можно видеть одновременно оба конца уровня, разрезанного вертикально по оси. Перед отсчетом по рейке элевационным винтом осуществляют точное совмещение (контакт ) концов пузырька уровня, приведя тем самым визирную ось зрительной трубы в горизонтальное положение. Именно поэтому уровень в нивелире Н-З называют контактным .

В момент контакта, когда визирная ось занимает горизонтальное положение, и производят отсчеты по рейкам. Например, отсчет с рейки (рис. 5, а ) равен 1250.

Нивелир Н-З является достаточно точным и портативным прибором, масса его без укладочного ящика 2кг.

Нивелир Н-ЗК (рис. 5, б ) имеет устройство для автоматического приведения визирной оси в горизонтальное положение при наклоне прибора в диапазоне ±15". В отличие от нивелира Н-З подставка 1 зрительной трубы не имеет закрепительного винта, окончательное наведение трубы производят микромерным винтом 2.

Увеличение зрительной трубы нивелира Н-3К составляет 20 x . Ось вращения прибора приводится в отвесное положение при помощи круглого уровня 3.

Маятниковый, оптико-механический компенсатор (рис. 6) расположен между сеткой нитей 4 и фокусирующей линзой 1 в сходящемся пучке лучей. Компенсатор состоит из двух прямоугольных призм 3 и 5. Верхняя призма 3 служит для передачи изображения в плоскость сетки нитей 4, она скреплена с корпусом зрительной трубы. Нижняя призма 5 подвешена на двух парах стальных нитей 2, пересекающихся в центре тяжести подвески 6. Воздушный демпфер 7 служит для гашения колебаний призмы.

Рис. 6.

Нивелир Н-10КЛ (рис. 5, в ) имеет оптико-механический компенсатор. Чувствительным элементом компенсатора является прямоугольная призма, подвешенная на шарикоподшипниковой подвеске, колебания компенсатора гасятся воздушным демпфером. Зрительная труба имеет прямое изображение. Наводящий винт трубы отсутствует. В нижнюю часть нивелира вмонтирован горизонтальный лимб со шкалой через 1°, что расширяет возможности нивелира при решении различных инженерных задач в строительстве.

Рейки для нивелирования выпускают согласно ГОСТ 11158-83 трех типов: РН 05, РН 3, РН 10. Буква Р - рейка, Н - нивелирная, цифрами, стоящими после букв, обозначают величину средней квадратической погрешности в мм на 1км хода. В комплекте к каждому нивелиру даются две однотипные нивелирные рейки.

Рейки РН-3, PH-l0 изготовляют из дерева хвойных пород, цельными и складными. К нижнему концу рейки (пятке) прибивается металлическая пластина толщиной 2мм. Рейки имеют на обеих сторонах шкалы (рис. 41, а ), выполненные в виде сантиметровых шашек.

Каждый дециметр шкал оцифрован. С одной стороны шашки наносятся черного цвета на белом фоне (черная сторона), с другой - красные на белом фоне (красная сторона). На черных сторонах реек нуль (начало шкалы) совпадает с пяткой рейки, на красных сторонах с плоскостью пятки совпадает другой отсчет, например, 4687. Таким образом, начало отсчета по черной и красной сторонам смещено на определенную величину. Это сделано для того, чтобы контролировать правильность отсчетов в процессе нивелирования. Разность отсчетов по черной и красной сторонам одной и той же рейки - величина постоянная. Отсчеты по рейкам берут по средней нити сетки с округлением до миллиметра. Для точной установки рейки в отвесное положение к ней прикрепляют круглый уровень или отвес. В рабочем положении рейки удерживают с помощью ручек.


Рис. 7. а - рейка РН-10; б - рейка РН-05 в поле зрения трубы; в - костыль; г - башмак

В последнее время на строительстве часто применяют для нивелирования рейки со шкалой, выполненной на лавсановой пленке. Такие шкалы, свернутые в рулон, удобны при транспортировке, для работы их прикрепляют к деревянным брускам нужной длины.

Согласно ГОСТ 11158-83 шкалы на рейки РН-З наносятся со следующими предельными погрешностями: отклонения от номинального значения длины наименьшего интервала равны 0,2мм, допустимая разность между средней длиной метра пары реек одного комплекта 0,8 мм. Рейки могут быть длиной 1,5; 3,0; 4,0м, в особо стесненных условиях, например, при производстве нивелирования внутри трубопроводов используют специальные рейки длиной 0,8 и 1,0м.

Рейки РН-05 состоят из деревянного корпуса, на который натягивают ленту со штрихами через 5мм. Обычно имеются две шкалы - «основная» и «дополнительная». На шкалах подписываются полудециметры. Ленты изготовляют из сплава (инвара) с низким коэффициентом линейного расширения, что позволяет устранить температурные деформации шкал.

Порядок взятия отсчета с помощью нивелира Н-05 по такой рейке следующий:

  • · после установки нивелира в рабочее положение и наведения трубы на рейку, совмещают изображение концов пузырька цилиндрического уровня;
  • · вращая барабан микрометра, наводят биссектор или горизонтальную нить на ближний штрих шкалы (см. рис. 7 б );
  • · отсчитывают полудециметры и полусантиметры, на рис. 7, б - 148;
  • · берут отсчет по барабану микрометра 25, а полный отсчет 14825.

При наблюдениях за осадками зданий и других сооружений часто вместо реек используют короткие шкалы, которые прикрепляют к стенам или подвешивают на специальные реперы.

При проложении нивелирного хода в точках установки реек забивают колья или металлические штыри, на которые при нивелировании ставят рейки. Для более точного нивелирования рейки устанавливают на костыли или башмаки (рис. 7 в; г ).

Костыли выполняют в виде металлических стержней со сферической головкой, на которую ставят рейку. При забивке костыля в грунт на верхнюю часть надевают крышку. Башмак -металлическая пластина толщиной 15-20мм со сферической головкой для установки рейки.