По каким основным признакам различают типы нивелиров. Чем отличаются различные типы нивелиров. Основные геометрические условия

Нивелиры делятся на 3 вида:

Глухой н., Лазерный н. и н. С компенсатором.

Глухой н.: зрительная труба, уровень и подставка соединены так, что их взаимное положение можно изменить только при помощи исправительных винтов.

Лазерный н.: прибор, основанный на использовании лазерного излучения для создания горизонтальной световой линии или плоскости, относительно которой с помощью нивелирной рейки можно определять превышения.

Н. с компенсатором: нивелир, в котором линия визирования занимает горизонтальное положение автоматически после предварительной установки оси вращения в отвесное положение по круговому уровню. (нельзя измерять н. вперед т.к. нет высоты прибора)

Согласно ГОСТ 10528 - 76 в нашей стране выпускаются нивелиры трех типов: высокоточные с ошибкой измерения превышения не более 0.5 мм на 1 км хода, точные с ошибкой измерения превышения 3 мм на 1 км хода и технические с ошибкой измерения превышений 10 мм на 1 км хода.

Нивелиры всех типов могут выпускаться либо с уровнем при трубе, либо с компенсатором наклона визирной линии трубы. При наличии компенсатора в шифре нивелира добавляется буква К, например, Н-3К. У нивелиров Н-3 и Н-10 допускается наличие горизонтального лимба; в этом случае в шифре нивелира добавляется буква Л, например, Н-10Л.

Нивелир с уровнем при трубе изображен на рис.4.33.

Зрительная труба и уровень при ней являются важнейшими частями нивелира.

Элевационный винт служит для приведения визирной линии трубы в горизонтальное положение. С его помощью поднимают или опускают окулярный конец трубы; при этом пузырек уровня перемещается и когда он будет точно в нуль-пункте, визирная линия должна устанавливаться горизонтально.

1 - зрительная труба; 2 -цилиндрический уровень при трубе;

3 - элевационный винт; 4 -установочный круглый уровень (на рисунке не показан);

5,6 - закрепительный и микрометренный винты азимутального вращения;

8 -подставка с тремя подъемными винтами.

Цилиндрический уровень обычно контактный; изображение контактов пузырька передается системой призм в поле зрения трубы, что очень удобно, так как наблюдатель видит сразу и рейку, и уровень.

Для нивелира с уровнем при трубе выполняются три поверки.

1. Ось цилиндрического уровня и визирная линия трубы должны быть параллельны и лежать в параллельных вертикальных плоскостях - это условие называется главным условием нивелира с уровнем при трубе. Первая часть главного условия проверяется двойным нивелированием вперед. На местности забивают два колышка на расстоянии около 50 м один от другого. Нивелир устанавливают над точкой А так, чтобы окуляр трубы находился на одной вертикальной линии с точкой (рис.4.34-а). От колышка до центра окуляра измеряют высоту инструмента i 1 . Затем рейку ставят в точку В, наводят на нее трубу нивелира, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b 1 . Затем нивелир и рейку меняют местами, измеряют высоту инструмента i 2 , приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b 2 (рис.4.34б).


Пусть главное условие нивелира не выполняется, и при положении пузырька уровня в нульпункте визирная линия не горизонтальна, а составляет с осью уровня некоторый угол i. Тогда вместо правильного отсчета b 0 1 получается ошибочный - b 1 . Ошибку отсчета обозначим x, и превышение точки В относительно точки А будет равно:

h = i 1 - (b 1 + x).

При положении нивелира в точке В превышение точки А относительно точки В:

h" = i 2 - (b 2 + x).

Но h = - h", поэтому

i 1 - (b 1 + x) = - .

Отсюда получаем:

x = 0.5*(i 1 + i 2) - 0.5*(b 1 + b 2). (4.59)

Если x получается больше 4 мм, необходимо выполнить юстировку уровня, т.е. устранить угол i. Для этого элевационным винтом наклоняют трубу нивелира до тех пор, пока отсчет по рейке не будет равен правильному отсчету:

b 0 2 = b 2 + x,

при этом пузырек уровня уйдет из нуль-пункта. Исправительными винтами уровня приводят пузырек в нуль-пункт и повторяют поверку заново. Полная программа поверки главного условия включает еще проверку параллельности вертикальных плоскостей, проведенных через визирную линию трубы и ось уровня; порядок этой проверки изложен в на стр.62.

При нивелировании строго из середины ошибка отсчета по рейке из-за невыполнения главного условия нивелира не влияет на величину измеряемого превышения (рис.4.35)

2. Ось круглого установочного уровня должна быть параллельна оси вращения нивелира. Приводят пузырек круглого уровня в нуль-пункт, затем поворачивают нивелир по азимуту на 180 o . Если пузырек отклонился от нуль-пункта, то на половину отклонения его перемещают с помощью подъемных винтов и на половину - исправительными винтами круглого уровня.

Существует и другой, более надежный способ поверки круглого уровня: сначала тщательно устанавливают ось вращения нивелира в отвесное положение с помощью элевационного винта и цилиндрического уровня при трубе, затем исправительными винтами круглого уровня приводят его пузырек в нуль-пункт.

3. Горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения нивелира, т.е. быть горизонтальной. Рейку ставят в 30 - 40 м от нивелира и закрепляют ее, чтобы она не качалась. Затем берут отсчеты по рейке при трех положениях ее изображения: в центре поля зрения, слева от центра и справа. Если отсчеты отличаются один от другого более, чем на 1 мм, то сетку нитей нужно развернуть.

Предполагая, что сетки нитей строго перпендикулярны, можно проверить вертикальность вертикальной нити. Для этого в 20 м от нивелира подвешивают отвес, наводят на него трубу и проверяют совпадение вертикальной нити сетки с нитью отвеса.

Важнейшими характеристиками нивелира, определяющими точность измерения превышений, являются увеличение зрительной трубы и цена деления цилиндрического уровня при трубе. По этим характеристикам определяет пригодность нивелира для выполнения работ заданной точности. Чтобы получить численные значения увеличения трубы и цены деления уровня, выполняют соответствующие исследования нивелира.

Нивелир - геодезический прибор со зрительной трубой, визирная ось которого служит для воспроизведения горизонтальной линии.

Нивелиры снабжены уровнями или компенсаторами - устройствами для достижения горизонтальности оптической оси. Таким образом,

оптические нивелиры бывают двух типов: нивелиры с уровнем и ни­

зирования (с компенсатором). Кроме того, электронные технологии позволили создать современный многофункциональный цифровой

(электронный) нивелир, совмещающий функции высокоточного

оптического нивелира, электронного запоминающего устройства

и встроенного программного обеспечения для обработки выполнен­

ных измерений.

Оптические нивелиры - самые распространенные приборы.

Некоторые марки их отличаются продолжительным сроком службы

(НВ-1, Н-3 и др.). Многообразие марок нивелиров обусловлено ши­

роким спектром областей применения: от изысканий, строительства

до создания государственных нивелирных сетей.

Цифра перед буквой Н в марке нивелира обозначает серию. Нали­

чие в марке следующих букв означает: К - труба нивелира снабжена

компенсатором, П - зрительная труба с прямым изображением,

JI - нивелир с горизонтальным лимбом.

Нивелиры также различаются по точности, что указывается в их марке. Например, у нивелиров Н-05, Н-3, 3H5JI, Н-10 гарантированная погрешность нивелирования на 1 км хода составляет соответственно 0,5; 3; 5 и 10 мм.

Рассмотрим устройство нивелира Н-3

Зрительная труба и уровень при ней являются важнейшими частями нивелира.

Элевационный винт служит для приведения визирной линии трубы в горизонтальное положение. С его помощью поднимают или опускают окулярный конец трубы; при этом пузырек уровня перемещается и когда он будет точно в нуль-пункте, визирная линия должна устанавливаться горизонтально.

Цилиндрический уровень обычно контактный; изображение контактов пузырька передается системой призм в поле зрения трубы, что очень удобно, так как наблюдатель видит сразу и рейку, и уровень.

1 - зрительная труба; 2 -цилиндрический уровень при трубе;

3 - элевационный винт; 4 -установочный круглый уровень (на рисунке не показан);

5,6 - закрепительный и микрометренный винты азимутального вращения;

8 -подставка с тремя подъемными винтами.

В поле зрения трубы нивелира помимо сетки нитей введено изображение двух половинок концов цилиндрического уровня, которые в момент взятия отсчета по рейкам должны быть совмещены (на рисунке поле зрения трубы)

В комплект любого нивелира входят также две рейки и металлические «башмаки» или костыли. Для технического нивелирования используют деревянные двусторонние рейки, на которых с каждой стороны нанесены деления через 1 см. Одна сторона - красная, другая - черная. Деления черной стороны начинаются с нуля, а деления красной стороны - с произвольного отсчета, чаще близко к 4684 или 4784. Правильность нанесения делений на рейках проверяют специальной металлической контрольной линейкой, точная длина которой известна.

Костыли и башмаки используют для того, чтобы рейки на пикетах стояли устойчиво, не сдвигаясь ни в плане, ни по высоте. Костыли забивают, а башмаки устанавливают на грунте, иногда предварительно сняв дерн. При техническом нивелировании их нередко заменяют деревянными колышками, которыми отмечают пикеты и по которым ведется нивелирование.

В последнее время в работе с заказчиками часто приходится сталкиваться с вопросами о правильном подборе оптического нивелира для определенного вида работ. Подобные вопросы неоднократно поднимались и в Интернете. Речь идет не о том, какая марка или продукция какой компании наиболее подходит для выполнения той или иной работы, а непосредственно о тех технических характеристиках, которыми должен обладать прибор, используемый для какого-то конкретного вида работ. Появление таких вопросов, на наш взгляд, закономерно - и причин этому несколько. Во-первых, за последние годы на российском рынке появилось огромное количество моделей нивелиров различных зарубежных фирм. Часто продукция разных производителей имеет одинаковую маркировку. В таком обилии информации бывает тяжело разобраться. Во-вторых, большинство документов (СНиПов, Инструкций, ГОСТов), регламентирующих порядок тех или иных работ, рекомендуют использовать в разных случаях нивелиры, выпуск которых давно прекращен. Как быть в этом случае? В данной статье мы постарались собрать и систематизировать информацию, которая может быть полезна при подборе необходимых приборов.

В дополнение следует сказать, что по требованиям статьи 15 того же Закона нивелиры подвергаются поверке органами Государственной метрологической службы при выпуске из производства или ремонта, при ввозе по импорту и эксплуатации. Межповерочный интервал для нивелиров, как правило, составляет один год.

Как мы смогли убедиться, аспектов, которые необходимо учитывать при решении казалось бы такого простого вопроса, как выбор оптического нивелира, необходимого для определенной работы, достаточно много. Для того чтобы облегчить задачу для наших действующих и потенциальных клиентов, приведем еще одну таблицу. В Таблице 4 собрана информация по классификации нивелиров зарубежного производства, поставляемых ЗАО "ГЕОСТРОЙИЗЫСКАНИЯ", определены отношения нивелиров к группам согласно ГОСТ 10528-90, даны номера записей в Реестре средств измерений РФ.

Надеемся, что статья окажется полезной для наших читателей. С любыми возникшими дополнительно вопросами вы можете всегда обратиться к менеджерам ЗАО "ГЕОСТРОЙИЗЫСКАНИЯ".

Литература :

  1. ГОСТ 10528-90 НИВЕЛИРЫ. Общие технические условия.
  2. ГОСТ 24846- 81 ГРУНТЫ. МЕТОДЫ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ.
  3. "Инструкция по нивелированию I, II, III и IV классов", Москва, ЦНИИГАиК, 2003 год.
  4. Закон Российской Федерации от 27 апреля 1993 г. №4871-1 "Об обеспечении единства измерений"
  5. Информационное обеспечение поверочных работ. Шелагин С.П. "Геостройизыскания", 2008г.
  6. Каталог "Геостройизыскания", Выпуск 8, Москва, 2008 г.

Данная статья посвящена приборам, которыми производят измерение такого параметра, как высота. Однако прежде чем приступать к описанию самого инструмента, давайте разберемся, что представляет собой этот самый показатель.

Понятие высоты

Упомянутый параметр является относительной величиной, то есть данное значение всегда определяется относительно чего-либо. Чаще всего его измеряют относительно уровня моря, это значит, что линия морской поверхности принята за точку отсчета.

Такая система напоминает определение градуса воды по Цельсию, когда точкой отсчета принята температура перехода воды из жидкого состояния в твердое, и наоборот. Так же и с измерением высоты, положительным считается значение выше уровня моря, а отрицательным - ниже. В особых случаях точкой отсчета может выбираться любая другая поверхность. Например, высоту дома никто не будет измерять относительно уровня моря, здесь началом отсчета выступает на которой построено здание. По такому же принципу измеряют все частные случаи: высоту дерева, строения и т. д. А вот высоту горы или любой точки а также объекта, летящего в атмосфере (самолет, вертолет и т. п.) измеряют относительно уровня моря. Читатель может задать вопрос: «А какой принято использовать прибор для измерения относительной высоты?» Ответ на этот вопрос вы найдете, если прочитаете статью до конца.

Прибор для измерения относительной высоты: история развития и основные виды

С древности люди использовали для строительства и определения рельефа такой инструмент, как уровень. Это устройство стало основой и для современного измерительного механизма. К древнему уровню была приделана трубка, так и получился самый элементарный прибор для измерения относительной высоты, который назвали нивелиром, что означает «выравнивать». Элементарный нивелир представляет собой горизонтальную рейку и вертикальную планку, к которой присоединен отвес. Однако с развитием науки совершенствуются и инструменты. Прибор для измерения высоты не стал исключением. Так, современные нивелиры можно разделить на три основные группы. Первая - наиболее распространенная, к ней относятся приборы, в основу которых заложена высококачественная оптика. Вторая группа - это лазерные устройства. Эти приборы характеризуются И третья - самая «молодая» - это цифровые нивелиры.

Оптические измерительные инструменты

Такое устройство представляет собой цилиндрический уровень (либо компенсатор) и оптическую систему, которая помещена в металлический корпус (трубу). Уровень необходим для выставления визирной оси в горизонтальное положение.

Для проведения измерений нивелир устанавливается на треногу с опорной площадкой. Цилиндрический уровень представляет собой ампулу с жидкостью (эфир, спирт). Часть пространства, заполненную спиртовыми парами, называют пузырьком уровня. На верхней поверхности ампулы нанесена шкала с шагом в два миллиметра, средняя ее точка называется нуль-линией.

Лазерный нивелир

В данных устройствах в дополнение к оптическим системам пришли лазерные светодиоды, но, по сути, названное устройство мало чем отличается от оптического. Главной его особенностью является очень тонкий, идеально ровный луч, проецируемый на измеряемую поверхность. Это значительно упрощает процесс определения высоты.

Цифровой прибор для измерения относительной высоты

Данный инструмент существенно отличается от своих предшественников. Он не только изменил свой внешний облик и внутреннее устройство, но и значительно расширил свои возможности. Цифровой нивелир - это измерительный прибор, который способен не только проводить измерение, но и проецировать лучи, плоскости на любую поверхность. Этот инструмент просто незаменим при проведении строительных и ремонтных работ. Упомянутое устройство характеризуется высокой и простотой в применении, таким инструментом сможет пользоваться даже новичок.

Принцип работы цифрового нивелира

Основой рассматриваемого устройства являются электромагнитная система маятников и светодиодная (лазерная) оптическая система, которая предназначена для проецирования лазерных лучей в виде точек или линий. Один такой прибор может проецировать сразу несколько плоскостей, что очень удобно при строительстве. Для обеспечения точности измерений в используется металлический маятник, который выравнивает всю электронную и оптическую часть прибора относительно уровня земли. Даже если устройство стоит неточно или его сдвинули в процессе работы, маятник выставит схему параллельно земле, и проецируемая поверхность останется точной. Рассмотрим, как это происходит. Под маятником располагается несколько электрических или природных магнитов. Благодаря созданному магнитному полю предотвращается раскачивание маятника при изменении положения нивелира. При установке устройства данный элемент свободно раскачивается. Однако при прохождении через в материале (металле) наводится электрическое поле, трансформируемое в тепловую энергию, которая и тормозит всю систему.

Оптическая система прибора строится на светодиодах, создающих горизонтальные, вертикальные и диагональные лучи. Проходя через систему линз, они преобразуются в линии, которые и проецируются на измеряемых поверхностях.

Достоинства и недостатки цифровых нивелиров

Главным преимуществом такого прибора является простота и наглядность, а также возможность проводить работы с базовой плоскостью в нескольких точках одновременно. Также следует упомянуть и возможность построения горизонтальных и вертикальных плоскостей, причем сразу в разных направлениях.

Недостатком рассматриваемого устройства является его высокая стоимость. Изо всех них только устройства третьего класса соизмеримы по цене с оптическими нивелирами. Их можно использовать только при проведении ремонтных работ внутри помещения, где высокая точность большой роли не играет. Например, для разметки полов, стен, потолков. А для проведения геодезических измерений и для разметки грандиозных строящихся объектов требуются приборы первого или второго класса точности. Однако дальность применения таких инструментов все равно ограничена 600 метрами. При необходимости проводить измерения на большие расстояния следует использовать оптические нивелиры.

Классификация цифровых нивелиров

1. Точечный прибор для измерения высоты. Он напоминает лазерную указку, то есть, проецирует на измеряемую поверхность одну или несколько точек.

2. Статичный, или позиционный цифровой нивелир. Это устройство имеет два источника, проецирующих лазерные лучи на перпендикулярно размещенные призмы, которые преобразуют их в две видимые плоскости. В результате получаются две пересекающиеся крестом плоскости. В случае использования сложных оптических систем, содержащих более трех полупроводниковых диодов, появляется возможность проводить проецирование большого количества плоскостей, что весьма удобно при работе с многомерными объектами. Кроме того, чем больше плоскостей, тем больше мастеров могут заниматься ремонтными или строительными работами. Позиционные нивелиры также снабжаются функцией «лазерного отвеса». Это дополнительные диоды, благодаря которым можно направлять луч одновременно на пол и на потолок.

3. Ротационный цифровой нивелир. В таком устройстве лазер прикреплен к валу электродвигателя, то есть он может вращаться на 360 градусов. Кроме того, в таких приборах (вместо призмы) используется фокусирующая линза. В результате, вместо плоскости человек видит небольшую точку, однако при включении по всей рабочей области или площади комнаты проецируется непрерывная линия.

Нивелир - геодезический высотомер для определения превышений горизонтальной линией визирования (ГОСТ 21830-76).

Нивелир - геодезический инструмент для нивелирования, то есть определения разности высот между несколькими большими и маленькими клетками земной поверхности относительно условного уровня т.е определение превышения.

Современные нивелиры по конструкции делятся на три вида:

Каждый из видов имеет свои конструктивные особенности, сферу использования и точность измерения. Оптические и цифровые нивелиры, как правило, предназначены для использования специально подготовленными исполнителями, представляющими суть процесса и имеющими определенные профессиональные навыки. Лазерные нивелиры, напротив, созданы для того, чтобы ими мог пользоваться любой человек для решения самых различных задач. Уровень автоматизации и наглядность работы лазерных нивелиров, таковы, что их использование в большинстве случаев не требует специальной подготовки. Существует большое количество различных моделей лазерных нивелиров, отличающихся по конструкции, по назначению и точности работы.

Наибольшее распространение лазерные нивелиры приобрели в строительстве при монтажных и отделочных работах, заменив привычные уровни, бечевки и т.п.

Нивелиры классифицируют по двум признакам: по точности и по способу установки визирного луча в горизонтальное положение.

По первому признаку нивелиры делятся на группы:

  • Высокоточный – средняя квадратическая погрешность на 1 км двойного хода – 0,5 мм. Примечание: При работе с этими нивелирами допускается длина плеч (расстояние от нивелира до рейки) до 50 метров.
  • Точный – средняя квадратическая ошибка на 1 км двойного нивелирования 3 мм. Примечание: Допускается длина плеч до 75 – 100 метров.
  • Технический – ошибка 10 мм на 1км двойного хода. Примечание: Длина плеч допускается до 100 – 150 метров.

Точные и технические нивелиры могут изготавливать со зрительными трубами прямого или обратного изображения, допускается изготавливать с горизонтальным лимбом. Числа в шифре нивелира означают допустимую среднюю квадратическую погрешность, получаемую при нивелировании на 1 км двойного хода в мм.

Числа, стоящие впереди Н – номера последующих моделей. При наличии компенсатора к шифру нивелира добавляется индекс К, например Н–3К. Нивелиры типов Н–3 и Н–10 допускается изготовлять с лимбом для измерения горизонтальных углов с точностью до 5". При наличии лимба к шифру нивелира добавляется индекс Л, например Н–10КЛ.

Условное обозначение нивелирной рейки состоит из буквенного обозначения РН, цифрового обозначения группы нивелиров, для которой она предназначена (для высокоточных нивелиров – цифра 05, точных – 3, технических – 10) и номинальной длины рейки. В обозначении складных реек и (или) реек с прямым изображением оцифровки шкал после указания номинальной длины добавляют соответственно букву С и (или) П. Пример условного обозначения нивелирной рейки к техническим нивелирам, номинальной длиной 4000 мм, складной, с прямым изображением оцифровки шкалы: РН–10 – 4000 СП.