VAV система вентиляции. Олируя постоянный расход воздуха Vav клапана для систем вентиляции

Системы с переменным расходом воздуха (VAV - Variable Air Volume) - это энергоэффективная система вентиляции, позволяющая экономить энергию без снижения уровня комфорта. Система дает возможность независимого, для каждого отдельного помещения, регулирования параметров вентиляции, а также позволяет экономить капитальные и эксплуатационные затраты.

Современная база оборудования и автоматики позволяет создавать такие системы по ценам, почти не превышающих цены обычных систем вентиляции, при этом позволяя эффективно расходовать ресурсы. Все это и есть причины возрастающей популярности VAV-система.

Рассмотрим, что такое VAV-система, как она работает, какие преимущества дает, на примере вентиляционной системы коттеджа, площадью 250 кв.м. ().

Преимущества систем с переменным расходом воздуха

Системы с переменным расходом воздуха (VAV – Variable Air Volume), уже в течение нескольких десятилетий широко используются в Америке и Западной Европе, на Российский рынок они пришли совсем недавно. Пользователи западных стран высоко оценили преимущество независимого, для каждого отдельного помещения, регулирования параметров вентиляции, а также возможность экономии капитальных и эксплуатационных затрат.

Вентиляционные “Variable Air Volume“ системы работают в режиме изменения количества подаваемого воздуха. Изменения тепловой нагрузки помещений компенсируются путем изменения объемов приточного и вытяжного воздуха при его постоянной температуре, поступающего из центральной приточной установки.

Вентиляционная система VAV реагирует на изменение тепловой нагрузки отдельных помещений или зон здания и изменяет фактическое количество воздуха, подаваемого в помещение или зону.

За счет этого вентиляция работает при общем значении расхода воздуха меньшем, чем необходимо при суммарной максимальной тепловой нагрузке всех отдельных помещений.

Это обеспечивает снижение потребления энергии при сохранении заданного качества воздуха внутри помещений. Снижение энергетических затрат может составлять от 25-50% в сравнении с вентиляционными системами с постоянным расходом воздуха.

Рассмотрим эффективность на примере вентиляции загородного дома
площадью 250 м², с тремя спальнями

При традиционной системе вентиляции , для жилого помещения такой площади, требуется расход воздуха около 1000 м³/ч., и зимой для нагрева приточного воздуха до комфортной температуры потребуется около 15 кВтч. При этом заметная часть энергии будет тратиться впустую, ведь люди, для которых работает вентиляция, не могут находиться сразу во всем коттедже: ночь они проводят в спальнях, а день - в других комнатах. Однако выборочно уменьшить производительность традиционной системы вентиляции в нескольких помещениях невозможно, поскольку балансировка воздушных клапанов, с помощью которых можно регулировать подачу воздуха по помещениям, производится на этапе пуско-наладки, а в процессе эксплуатации соотношение расходов изменять нельзя. Пользователь может только уменьшить общий расход воздуха, но тогда в помещениях, где находятся люди, станет душно.

Если к воздушным клапанам подключить электроприводы, которые позволят дистанционно управлять положением заслонки клапана и тем самым регулировать расход воздуха через него, то можно будет включать и отключать вентиляцию раздельно в каждом помещении с помощью обычных выключателей. Проблема в том, что управлять такой системой весьма сложно, т.к. одновременно с закрытием части клапанов придется снижать производительность системы вентиляции на строго определенную величину, чтобы расход воздуха в остальных помещениях оставался неизменным и в результате улучшение превратится в головную боль.

Использовании VAV-системы позволит проводить все эти регулировки в автоматическом режиме. И так устанавливаем простейшую VAV-систему, которая позволяет раздельно включать и отключать подачу воздуха в спальни и остальные помещения. В ночном режиме, воздух подается только в спальни, следовательно расход воздуха составлять около 375 м³/ч (из расчета по 125 м³/ч на каждую спальню, пл. 20 м²), и потребление энергии около 5 кВтч, то есть, в 3 раза меньше, чем в первом варианте.

Получив возможность раздельного управления, в разных помещениях можно дополнить систему средствами новейшей автоматизации климатконтроля, так применение клапанов с пропорциональными электроприводами сделает управление плавным и еще более удобным; а если подключить включение/оключение подачи воздуха по сигналу датчика присутствия, мы получаем аналог системы «Умный глаз», используемой в бытовых сплит-системах, но на совершенно новом уровне. Для дальнейшей атоматизации в систему можно встраивать датчики температуры, влажности, концентрации CO2 и др, что в итоге - не только позволит беречь энергию, но и при этом значительно повысит уровень комфорта.

Если все блоки автоматики, которые управляют электроприводами воздушных клапанов, соединить единой шиной управления, то появится возможность централизованного сценарного управления всей системой. Так, можно создать и задавать индивидуальные режимы работы для разных помещений, в разных жизненных ситуациях, так:

ночью - воздух подается только в спальни, а в остальных помещениях клапаны открыты на минимальном уровне; днем - воздух подается в комнаты, кухни, и др помещения, кроме спален. В спальных комнатах клапаны закрыты или открыты на минимальном уровне.

вся семья в сборе - расход воздуха в гостиной увеличиваем; в доме никого - настраивается циклическое проветривание, которое не позволит возникнуть запахам и сырости, но сэкономит ресурсы.

Для независимого управления не только объемом, но и температурой приточного воздуха в каждом из помещений можно установить догреватели (маломощные калориферы), управляемые от индивидуальных регуляторов мощности. Это позволит подавать из вентустановки воздух с минимально допустимой температурой (+18°С), индивидуально нагревая его до требуемого уровня в каждом помещении. Такое техническое решение позволит еще больше снизить потребление энергии, и приблизит нас к системе «Умный дом».

Схема работы такой системы, скорее вопрос профильного специалиста, поэтому здесь мы приведем всего одну, самую простую схему (рабочий и ошибочный варианты) с объяснением как это работает. Но кроме простых систем, сущестуют и более сложные варианты позволяющие создавать любые VAV-системы - от бытовых бюджетных систем с двумя клапанами до многофункциональных вентиляционных систем административных зданий с поэтажным управлением расходом воздуха.

Звоните, специалисты компании "ОВК Инжиниринг" проконсультируют, помогут выбрать оптимальный вариант, спроектируют и установят VAV-систему, идеально подходящую именно Вам.

Почему VAV-системы должны устанавливать специалисты

Проще всего ответить на это вопрос, на примере. Рассмотрим типовую конфигурацию системы с переменным расходом воздуха и ошибки, которые могут быть допущены при ее проектировании. На иллюстрации показан пример корректной конфигурации воздухопроводной сети VAV-системы:

1. Верная схема VAV-системы с переменным расходом воздуха

В верхней части расположен управляемый клапан, который обслуживает три помещения (три спальни из нашего примера) => В этих помещениях установлены дроссель-клапаны с ручным управлением для балансировки на этапе пуско-наладки. Сопротивление этих клапанов не будет изменяться* в процессе работы, поэтому не оказывают влияния на точность поддержания расхода воздуха.

К магистральному воздуховоду подключен клапан с ручным управлением, который имеет неизменный расход воздуха P=const. Такой клапан может понадобиться для обеспечения нормальной работы вентустановки в случае, когда все остальные клапаны закрыты. => Воздуховод с этим клапаном выводится в помещение с постоянной подачей воздуха.

Схема простая, рабочая и эффективная.

Теперь рассмотрим ошибки, которые могут быть допущены при проектировании воздухопроводной сети VAV-системы:

2. Схема VAV-системы с ошибкой

Ошибочные ответвления воздуховодов выделены красным цветом. Клапаны №2 и 3 подключены к воздуховоду, идущему от точки разветвления к VAV-клапану №1. При изменении положения заслонки клапана №1 давление в воздуховоде возле клапанов №2 и 3 будет изменяться, поэтому расход воздуха через них не будет постоянным. Управляемый клапан №4 нельзя подключать к магистральному воздуховоду, поскольку изменение расхода воздуха через него приведет к тому, что давление P2 (в точке разветвления) не будет постоянным. А клапан №5 нельзя подключать так, как показано на схеме, по той же причине, что и клапаны №2 и 3.

*Конечно можно настроить управляемый воздушный поток для каждой спальни, но в этом случае будет более сложная схема, которую в рамках данной статьи мы не рассматриваем.

Представьте, что вы хотите установить в квартире систему вентиляции. Расчеты показывают, что для нагрева приточного воздуха в холодное время года потребуется калорифер мощностью 4,5 кВт (он позволит нагревать воздух от -26°С до +18°С при производительности вентиляции равной 300 м³/ч). Подача электроэнергии в квартиру производится через автомат на 32А, поэтому несложно подсчитать, что мощность калорифера составляет около 65% от общей мощности, выделенной для квартиры. Это означает, что такая система вентиляции не только существенно увеличит суммы счетов за электроэнергию, но и перегрузит электросеть. Очевидно, что устанавливать калорифер такой мощности не представляется возможным и его мощность придется уменьшить. Но как это сделать это без снижения уровня комфорта обитателей квартиры?

Как снизить потребление электроэнергии?


Вентустановка с рекуператором.
Для ее работы необходима сеть
приточных и вытяжных воздуховодов.

Первое, что обычно приходит на ум в таких случаях — это использование вентиляционной системы с рекуператором. Однако такие системы хорошо подходят для больших коттеджей, в квартирах же для них просто не хватает места: помимо приточной воздухопроводной сети, к рекуператору нужно подводить вытяжную сеть, вдвое увеличивая общую протяженность воздуховодов. Другой недостаток рекуперационных систем заключается в том, что для организации воздушного подпора «грязных» помещений заметная часть вытяжного потока должна направляться в вытяжные каналы санузла и кухни. А разбалансировка приточного и вытяжного потоков приводит к существенному снижению эффективности рекуперации (отказаться от воздушного подпора «грязных» помещений нельзя, так как в этом случае неприятные запахи начнут гулять по квартире). Кроме того, стоимость рекуперационной системы вентиляции может легко превысить двукратную стоимость обычной приточной системы. Существует ли другое, недорогое, решение нашей проблемы? Да, это приточная VAV система.

Система с переменным расходом воздуха или VAV (Variable Air Volume) система позволяет регулировать подачу воздуха в каждом помещении независимо друг от друга. С такой системой вы можете отключать вентиляцию в любой комнате точно так же, как привыкли выключать свет. Действительно, ведь мы не оставляем гореть свет там, где никого нет — это было бы неразумной тратой электроэнергии и денег. Зачем же позволять напрасно тратить энергию системе вентиляции с мощным калорифером? Однако традиционные системы вентиляции именно так и работают: подают нагретый воздух во все помещения, где могли бы находиться люди, независимо от того есть ли они там на самом деле. Если бы мы управляли светом точно так же, как традиционной вентиляцией — он бы горел сразу во всей квартире, даже ночью! Несмотря на очевидное преимущество VAV систем, в России, в отличие от западной Европы, они пока не получили широкого распространения, отчасти потому, что для их создания требуется сложная автоматика, которая существенно увеличивает стоимость всей системы. Однако стремительное удешевление электронных компонентов, которое происходит в последнее время, позволило разработать недорогие готовые решения для построения VAV систем. Но прежде, чем переходить к описанию примеров систем с переменным расходом воздуха, разберемся, как они работают.



На иллюстрации показана VAV-система с максимальной производительностью 300 м³/ч, обслуживающая две зоны: гостиную и спальню. На первом рисунке подача воздуха производится в обе зоны: 200 м³/ч в гостиную и 100 м³/ч в спальню. Допустим, что зимой мощности калорифера будет недостаточно для нагрева такого потока воздуха до комфортной температуры. Если бы мы использовали обычную систему вентиляции, то нам пришлось бы снизить общую производительность, но тогда в обоих помещениях стало бы душно. Однако у нас установлена VAV-система, поэтому днем мы можем подавать воздух только в гостиную, а ночью — только в спальню (как на втором рисунке). Для этого клапаны, регулирующие объем подаваемого в помещения воздуха, оборудуются электроприводами, которые позволяют с помощью обычных выключателей открывать и закрывать заслонки клапанов. Таким образом, нажав на выключатель, пользователь перед сном отключает вентиляцию в гостиной, где ночью никого нет. В этот момент дифференциальный датчик давления, который измеряет давление воздуха на выходе приточной установки, фиксирует увеличение измеряемого параметра (при закрывании клапана сопротивление воздухопроводной сети возрастает, приводя к увеличению давления воздуха в воздуховоде). Эта информация передается в приточную установку, которая автоматически снижает производительность вентилятора ровно на столько, чтобы давление в точке измерения оставалось неизменным. Если же давление в воздуховоде остается постоянным, то и расход воздуха через клапан в спальне не изменится, и по-прежнему будет составлять 100 м³/ч. Общая производительность системы снизится и также будет равна 100 м³/ч, то есть ночью потребляемая системой вентиляции энергия уменьшится в 3 раза без ущерба для комфорта людей! Если включать подачу воздуха попеременно: днем в гостиную, а ночью в спальню, то максимальную мощность калорифера можно будет сократить на треть, а среднюю потребляемую энергию — в два раза. Самое интересное заключается в том, что стоимость такой VAV-системы превышает стоимость обычной системы вентиляции всего на 10-15%, то есть эта переплата будет быстро компенсирована за счет снижения суммы счетов за электроэнергию.

Лучше понять принцип работы VAV-системы поможет небольшая видеопрезентация:


Теперь, разобравшись с принципом работы VAV-системы, посмотрим, как можно собрать такую систему на основе имеющегося на рынке оборудования. За основу мы возьмем российские VAV-совместимые приточные установки Breezart, которые позволяют создавать VAV-системы, обслуживающие от 2 до 20 зон с централизованным управлением с пульта, по таймеру или датчику СО 2 .

VAV-система с 2-х позиционным управлением

Эта VAV-система собрана на базе приточной установки Breezart 550 Lux производительностью 550 м³/ч, которой достаточно для обслуживания квартиры или небольшого коттеджа (с учетом того, что система с переменным расходом воздуха может иметь меньшую производительность по сравнению с традиционной системой вентиляции). Эту модель, как и все остальные вентустановки Breezart, можно использовать для создания VAV-системы. Дополнительно нам понадобится набор VAV-DP , в который входит датчик JL201DPR, измеряющий давление в канале воздуховода возле точки разветвления.


VAV-система на две зоны с 2-х позиционным управлением


Вентиляционная система разделена на 2 зоны, причем зоны могут состоять как из одного помещения (зона 1), так и из нескольких (зона 2). Это позволяет использовать подобные 2-х зонные системы не только в квартирах, но также в коттеджах или офисах. Управление клапанами каждой зоны производится независимо друг от друга с помощью обычных выключателей. Чаще всего такая конфигурация используется для переключения ночного (подача воздуха только в зону 1) и дневного (подача воздуха только в зону 2) режимов с возможностью подачи воздуха во все помещения, если, к примеру, к вам пришли гости.

По сравнению обычной системой (без VAV управления) увеличение стоимости базового оборудования составляет около 15% , а если учитывать суммарную стоимость всех элементов системы вместе с монтажными работами, то увеличение стоимости будет почти незаметным. Но даже такая простая VAV-система позволяет экономить около 50% электроэнергии!

В приведенном примере мы использовали только две управляемых зоны, но их может быть любое количество: приточная установка просто поддерживает заданное давление в воздуховоде независимо от конфигурации воздухопроводной сети и количества управляемых VAV-клапанов. Это позволяет при недостатке средств сначала установить простейшую VAV-систему на две зоны, увеличив в дальнейшем их количество.

До сих пор мы рассматривали системы с 2-х позиционным регулированием, в которых VAV-клапан либо открыт на 100%, либо полностью закрыт. Однако на практике чаще используют более удобные системы с пропорциональным управлением, позволяющие плавно регулировать объем подаваемого воздуха. Пример такой систем мы сейчас и рассмотрим.

VAV-система с пропорциональным управлением


VAV-система на три зоны с пропорциональным управлением


В этой системе используется более производительная ПУ Breezart 1000 Lux на 1000 м³/ч, которая применяется в офисах и коттеджах. Система состоит из 3-х зон с пропорциональным управлением. Для управления приводами клапанов с пропорциональным управлением используются модули CB-02 . Вместо выключателей здесь применяются регуляторы JLC-100 (внешне похожие на диммеры). Такая система позволяет пользователю плавно регулировать подачу воздуха в каждой зоне в диапазоне от 0 до 100%.

Состав базового оборудования VAV-системы (приточной установки и автоматики)

Заметим, что в одной VAV-системе могут одновременно использовать зоны с 2-х позиционным и пропорциональным управлением. Кроме этого, управление может производиться от датчиков движения — это позволит подавать воздух в помещение только тогда, когда в нем кто-нибудь есть.

Недостатком всех рассмотренных вариантов VAV-систем является то, что пользователю приходится вручную регулировать подачу воздуха в каждой зоне. Если таких зон много, то лучше создать систему с централизованным управлением.

VAV-система с централизованным управлением

Централизованное управление VAV-системой позволяет включать предварительно запрограммированные сценарии, изменяя подачу воздуха одновременно во всех зонах. Например:

  • Ночной режим . Воздух подается только в спальни. Во всех остальных помещениях клапаны открыты на минимальном уровне, чтобы не допустить застаивания воздуха.
  • Дневной режим . Во все помещения, кроме спален, воздух подается в полном объеме. В спальных комнатах клапаны закрыты или открыты на минимальном уровне.
  • Гости . Расход воздуха в гостиной увеличен.
  • Циклическое проветривание (используется при длительном отсутствии людей). В каждое помещение по очереди подается небольшое количество воздуха — это позволяет избежать появления неприятных запахов и духоты, которые могут создать дискомфорт при возвращении людей.


VAV-система на три зоны с централизованным управлением


Для централизованного управления приводами клапанов используют модули JL201, которые объединяются в единую систему, управляемую по шине ModBus. Программирование сценариев и управление всеми модулями производится со штатного пульта вентустановки. К модулю JL201 можно подключить датчик концентрации углекислого газа или регулятор JLC-100 для локального (ручного) управления приводами.

Состав базового оборудования VAV-системы (приточной установки и автоматики)

В видеоролике рассказывается об управлении VAV-системой с централизованным управлением на 7 зон с пульта приточной установки Breezart 550 Lux:


Заключение

На этих трех примерах мы показали общие принципы построения и кратко описали возможности современных VAV-систем, более подробную информацию об этих системах можно найти на сайте Breezart .




Основные назначения данной системы: снижение эксплуатационных расходов и компенсация загрязнения фильтров.

По дифференциальному датчику давления , который установлен на плате контроллера, автоматика распознает давление в канале и автоматически выравнивает его путем увеличения или уменьшения оборотов вентилятора. Приточный и вытяжной вентиляторы при этом работают синхронно.

Компенсация загрязнения фильтров

При эксплуатации системы вентиляции фильтры неизбежно загрязняются, увеличивается сопротивление вентиляционной сети и уменьшается объем подаваемого в помещения воздуха. VAV-система позволит поддерживать постоянный расход воздуха на протяжении всего срока эксплуатации фильтров.

  • VAV-система наиболее актуальна в системах с высоким уровнем очистки воздуха, где загрязнение фильтров приводит к ощутимому снижению объема подаваемого воздуха.

Снижение эксплуатационных расходов

VAV-система позволяет существенно сократить эксплуатационные расходы, особенно это заметно на приточных системах вентиляции , у которых высокое энергопотребление. Добиваются экономии путем полного или частичного отключения вентиляции отдельных помещений.

  • Пример : можно отключать гостиную ночью .

При расчете системы вентиляции руководствуются различными нормами расхода воздуха на человека.

Обычно в квартире или доме все помещения вентилируются одновременно, расход воздуха на каждое из помещений рассчитывается исходя из площади и назначения.
А что делать, если в данный момент в помещении никого нет?
Можно установить клапана и закрывать их, но тогда весь объем воздуха распределится по оставшимся помещениям, но это приведёт к увеличению шума, и бесполезному расходованию воздуха, на прогрев которого были потрачены заветные киловатты.
Можно уменьшить мощность вентиляционной установки, но это так же уменьшит объем подаваемого воздуха во все помещения, и там где присутствуют пользователи воздуха будет «не хватать».
Лучшее решение, это подавать воздух только в те помещения, где есть пользователи. А мощность вентиляционной установки должна регулироваться сама, под требуемый расход воздуха.
Именно это и позволяет осуществить VAV-система вентиляции.

VAV-системы окупаются довольно быстро, особенно на приточных установках, но главное, позволяют существенно снизить эксплуатационные расходы.

  • Пример : Квартира 100м2 с VAV-системой и без .

Регулируют объем подаваемого в помещение воздуха электрическими клапанами.

Важным условием постройки VAV-системы является организация минимального подаваемого объема воздуха. Причина такого условия кроется в отсутствии возможности управлять расходом воздуха ниже определённого минимального уровня.

Решается это тремя способами:

  1. в отдельно взятом помещении организуется вентиляция без возможности регулирования и с объемом воздухообмена равным или большим, чем требуемый минимальный расход воздуха в VAV-системе.
  2. во все помещения при выключенных или закрытых клапанах подается минимальное количество воздуха. Суммарно это количество должно быть равным или большим, чем требуемый минимальный расход воздуха в VAV-системе.
  3. Совместно первый и второй вариант.

Управление от бытового выключателя:

Для этого потребуется бытовой выключатель и клапан с возвратной пружиной. Включение будет приводить к полному открытию клапана, и вентиляция помещения будет производиться в полном объеме. При выключении возвратная пружина закрывает клапан.

Выключатель/включатель заслонки.

  • Оборудование : На каждое обслуживаемое помещение потребуется один клапан и один выключатель .
  • Эксплуатация : При необходимости пользователь включает и выключает вентиляцию помещения бытовым выключателем .
  • Плюсы : Самый простой и бюджетный вариант VAV-системы. Бытовые выключатели всегда подходят по дизайну .
  • Минусы : Участие пользователя в регулировании. Низкая эффективность из-за on-off регулирования .
  • Совет : Выключатель рекомендуется устанавливать при входе в обслуживаемое помещение, на отметке +900мм, рядом или в блоке выключателей света .

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно, помещение №2 можно включать и отключать.

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. Все помещение можно включать и отключать.

Управление от кругового регулятора:

Для этого потребуется круговой регулятор и пропорциональный клапан. Данный клапан может открываться, регулируя объем подаваемого воздуха в пределах от 0 до 100%, необходимая степень открытия задается регулятором.

Круговой регулятор 0-10В

  • Оборудование : на каждое обслуживаемое помещение потребуется один клапан с управлением 0…10В и один регулятор 0…10В .
  • Эксплуатация : При необходимости пользователь выбирает необходимый уровень вентиляции помещения на регуляторе .
  • Плюсы : Более точное регулирование количество подаваемого воздуха .
  • Минусы : Участие пользователя в регулировании. Внешний вид регуляторов не всегда подходит по дизайну .
  • Совет : Регулятор рекомендуется устанавливать при входе в обслуживаемое помещение, на отметке +1500мм, над блоком выключателей света .

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно, помещение №2 можно включать и отключать. В помещении №2 можно плавно регулировать объем подаваемого воздуха.

Малое открытие (клапан открыт на 25%) Среднее открытие (клапан открыт на 65%)

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. Все помещение можно включать и отключать. В каждом помещении можно плавно регулировать объем подаваемого воздуха.

Управление по датчику присутствия:

Для этого потребуется датчик присутствия и клапан с возвратной пружиной . При регистрации в помещении пользователя датчик присутствия открывает клапан и вентиляция помещения производиться в полном объеме. При отсутствии пользователей возвратная пружина закрывает клапан.

Датчик движения

  • Оборудование : на каждое обслуживаемое помещение потребуется один клапан и один датчик присутствия .
  • Эксплуатация : Пользователь входит в помещение - начинается вентиляция помещения .
  • Плюсы : Пользователь не участвует в регулировании зон вентиляции. Невозможно забыть включить или выключить вентиляцию помещения. Множество вариантов датчика присутствия .
  • Минусы : Низкая эффективность из-за on-off регулирования. Внешний вид датчиков присутствия не всегда подходит по дизайну .
  • Совет : Применяйте качественные датчики присутствия c встроенным реле времени, для корректной работы VAV- системы .

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно. При регистрации пользователя начинается вентиляция помещения №2

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. При регистрации пользователя в любом из помещений начинается вентиляция данного помещения.

Управление по датчику CO2:

Для этого потребуется датчик CO2 с сигналом 0…10В и пропорциональный клапан с управлением 0…10В.
При регистрации превышения в помещении уровня CO2 датчик начинает открывать клапан в соответствии с регистрируемым уровнем CO2 .
При понижении уровня CO2 датчик начинает закрывать клапан, при этом клапан может закрыться, как полностью, так и до положения, при котором будет поддерживаться необходимый минимальный расход.

Настенный или канальный датчик СО2

  • Пример : на каждое обслуживаемое помещение потребуется один пропорциональный клапан с управлением 0…10В и один датчик CO2 с сигналом 0…10В.
  • Эксплуатация : Пользователь входит в помещение, и если уровень CO2 будет превышен - начинается вентиляция помещения .
  • Плюсы : Самый энергоэффективный вариант. Пользователь не участвует в регулировании зон вентиляции. Невозможно забыть включить или выключить вентиляцию помещения. Система начинает вентиляцию помещения только когда это действительно нужно. Система максимально точно регулирует подаваемый в помещение объем воздуха .
  • Минусы : Внешний вид датчиков CO2 не всегда подходит по дизайну .
  • Совет : Применять качественные датчики CO2, для корректной работы. Канальный датчик CO2 возможно применять в приточно-вытяжных системах вентиляции, если в обслуживаемом помещении присутствуют и приток и вытяжка .

Основная причина, по которой требуется вентиляция помещения, это превышение уровня CО2.

В процессе жизнедеятельности человек выдыхает значительное количество воздуха с высоким уровнем CO2 и находясь в непроветриваемом помещении уровень CO2 в воздухе неизбежно растет, это и является определяющим, когда говорят что стало «мало воздуха».
Лучше всего воздух подавать в помещение именно при превышении уровня CO2 выше значения 600-800 ppm.
Ориентируясь на данный параметр качества воздуха можно создать самую энергоэффективную систему вентиляции .

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. При регистрации повышения содержания CO2 в любом из помещений начинается вентиляция данного помещения. Степень открытия и объем подаваемого воздуха зависит от уровня превышения содержания CO2.

Управление системой «Умный дом»:

Для этого потребуется система «Умный дом» и любой вид клапанов. К системе «Умный дом» могут быть подключены любые типы датчиков.
Управление воздухораспределением может быть как через датчики с помощью программы управления, так и пользователем с центрального пульта управления или приложения с телефона.

Панель умного дома

  • Пример : Система работает по датчику СO2, периодически проветривает помещения, даже в отсутствии пользователей. Пользователь может принудительно включить вентиляцию в любом помещении, а так же задать количество подаваемого воздуха .
  • Эксплуатация : Поддерживаются любые варианты управления .
  • Плюсы : Самый энергоэффективный вариант. Возможность точного программирования недельного таймера .
  • Минусы : Цена .
  • Совет : Монтировать и настраивать квалифицированными специалистами .


Регулирование расхода воздуха – это часть процесса наладки систем вентиляции и кондиционирования, оно выполняется при помощи специальных регулирующих воздушных клапанов. Регулирование расхода воздуха в системах вентиляции позволяет обеспечить требуемый приток свежего воздуха в каждое из обслуживаемых помещений, а в системах кондиционирования – охлаждение помещений в соответствии с их тепловой нагрузкой.

Для регулирования расхода воздуха применяются воздушные клапана, ирисовые клапана, системы поддержания постоянного расхода воздуха (CAV, Constant Air Volume), а также системы поддержания переменного расхода воздуха (VAV, Variable Air Volume). Рассмотрим эти решения.

Два способа изменить расход воздуха в воздуховоде

Принципиально существует всего два способа изменить расход воздуха в воздуховоде – изменить производительность вентилятора или вывести вентилятор на максимальный режим и создать в сети дополнительное сопротивление движению потока воздуха.

Первый вариант требует подключения вентиляторов через частотные преобразователи или ступенчатые трансформаторы. При этом расход воздуха изменится сразу во всей системе. Отрегулировать подачу воздуха в одно конкретное помещение таким способом невозможно.

Второй вариант применяется для регулирования расхода воздуха по направлениям – по этажам и по помещениям. Для этого в соответствующие воздуховоды встраиваются различные регулировочные устройства, о которых речь и пойдёт ниже.

Воздушные отсечные клапана, шиберы

Самый примитивный способ регулирования расхода воздуха – применение воздушных отсечных клапанов и шиберов. Строго говоря, отсечные клапана и шиберы не являются регуляторами и не должны применяться в целях регулирования расхода воздуха. Тем не менее, формально они обеспечивают регулирование на уровне «0-1»: или воздуховод открыт, и воздух движется, или воздуховод закрыт, и расход воздуха равен нулю.

Отличие воздушных клапанов от шиберов заключается в их конструкции. Клапан, как правило, представляет собой корпус, внутри которого предусмотрена поворотная заслонка. Если заслонка повёрнута поперёк оси воздуховода, он перекрыт; если по оси воздуховода – он открыт. У шибера заслонка двигается поступательно, словно дверца шкафа-купе. Загораживая сечение воздуховода, она сводит расход воздуха к нулю, а, открывая сечение, обеспечивает проток воздуха.

В клапанах и в шиберах возможна установка заслонки в промежуточные положения, что формально позволяет изменять расход воздуха. Однако такой способ является самым неэффективным, сложно неконтролируемым и наиболее шумным. Действительно, поймать нужное положение заслонки при её прокручивании практически невозможно, а так как конструкция заслонок не предусматривает функцию регулирования расхода воздуха, в промежуточных положениях шиберы и заслонки достаточно сильно шумят.

Ирисовые клапана

Ирисовые клапана – одно из наиболее распространенных решений для регулирования расхода воздуха в помещениях. Они представляют собой круглые клапана с расположенными по внешнему диаметру лепестками. При регулировании лепестки смещаются к оси клапана, перекрывая часть сечения. При этом создается хорошо обтекаемая с аэродинамической точки зрения поверхность, что способствует снижению уровня шума в процессе регулирования расхода воздуха.

Ирисовые клапана снабжены шкалой с рисками, по которой можно отслеживать степень перекрытия живого сечения клапана. Далее производится измерение падения давления на клапане при помощи дифференциального манометра. По величине падения давления определяется фактический расход воздуха через клапан.

Регуляторы постоянного расхода

Следующий этап развития технологий регулирования расходов воздуха – появление регуляторов постоянного расхода. Причина их появления проста. Естественные изменения в вентиляционной сети, засорение фильтра, засорение наружной решетки, замена вентилятора и другие факторы приводят к изменению давления воздуха перед клапаном. Но клапан-то был настроен на некоторый штатный перепад давления. Как он будет работать в новых условиях?

Если давление перед клапаном снизилось, старые настройки клапана «передавят» сеть, и расход воздуха в помещение снизится. Если давление перед клапаном возросло, старые настройки клапана «недодавят» сеть, и расход воздуха в помещение возрастёт.

Однако главной задачей системы регулирования является именно сохранение проектного расхода воздуха во все помещения на протяжении всего жизненного цикла климатической системы. И здесь на первый план выходят решения для поддержания постоянного расхода воздуха.

Принцип их работы сводится к автоматическому изменению проходного сечения клапана в зависимости от внешних условий. Для этого в клапанах предусматривается специальная мембрана, которая деформируется в зависимости давления на входе в клапан и перекрывает сечение при повышении давления или освобождает сечение при понижении давления.

В других клапанах постоянного расхода вместо мембраны применяется пружина. Повышение давления перед клапаном сжимает пружину. Сжатая пружина воздействует на механизм регулирования проходного сечения, и проходное сечение уменьшается. При этом сопротивление клапана возрастает, нейтрализуя повышенное давление до клапана. Если же перед клапаном давление понизилось (например, вследствие засорения фильтра), пружина разжимается, и механизм регулирования проходного сечения увеличивает проходное отверстие.

Рассмотренные регуляторы постоянного расхода воздуха работают на основе естественных физических принципов без участия электроники. Существуют и электронные системы поддержания постоянного расхода воздуха. Они измеряют фактический перепад давления или скорость воздуха и соответствующим образом изменяют площадь проходного сечения клапана.

Системы с переменным расходом воздуха

Системы с переменным расходом воздуха позволяют изменять расход подаваемого воздуха в зависимости от фактического положения дел в помещении, например, в зависимости от количества человек, концентрации углекислого газа, температуры воздуха и других параметров.

Регуляторы данного вида представляют собой клапана с электроприводом, работа которого определяется контроллером, получающим информацию от датчиков, расположенных в помещении. Регулирование расходов воздуха в системах вентиляции и кондиционирования осуществляется по разным датчикам.

Для вентиляции важно обеспечить требуемое количество свежего воздуха в помещении. При этом задействуются датчики концентрации углекислого газа. Задачей системы кондиционирования является поддержание заданной температуры в помещении, следовательно, в ход идут датчики температуры.

В обеих системах также могут быть применены датчики движения или датчики определения количества человек в помещении. Но смысл их установки следует оговорить отдельно.

Безусловно, чем больше человек в помещении, тем больше свежего воздуха следует в него подавать. Но всё-таки первостепенной задача системы вентиляции заключается не в том, чтобы обеспечить расход воздуха «по людям», а в том, чтобы создать комфортную обстановку, что в свою очередь определяется концентрацией углекислого газа. При высокой концентрации углекислого газа вентиляция должна работать в более мощном режиме, даже если в помещении находится всего один человек. Аналогично, главным признаком работы системы кондиционирования является температура воздуха, а не количество человек.

Однако датчики присутствия позволяют определить, нужно ли вообще обслуживать данное помещение в настоящий момент. Кроме того, система автоматики может «понимать», что «дело к ночи», и в рассматриваемом кабинете вряд ли кто-то будет работать, а, значит, нет смысла тратить ресурсы на его климатизацию. Таким образом, в системах с переменным расходом воздуха разные датчики могут выполнять разные функции – для формирования регулирующего воздействия и для понимания необходимости в работе системы как таковой.

Наиболее продвинутые системы с переменным расходом воздуха позволяют на основе нескольких регуляторов формировать сигнал для управления вентилятором. Например, в один период времени почти все регуляторы открыты, вентилятор работает в режиме высокой производительности. В другой момент времени часть регуляторов понизила расход воздуха. Вентилятор может работать в более экономичном режиме. В третий момент времени люди сменили дислокацию, переместившись из одних помещений в другие. Регуляторы отработали ситуацию, но общий расход воздуха почти не изменился, следовательно, вентилятор продолжит работу в прежнем экономичном режиме. Наконец, возможна ситуация, когда почти все регуляторы закрыты. В этом случае вентилятор снижает обороты до минимума или выключается.

Такой подход позволяет избежать постоянной ручной перенастройки системы вентиляции, существенно повысить её энергоэффективность, увеличить срок службы оборудования, накопить статистику о климатическом режиме здания и его изменении в течение года и в течение суток в зависимости от разных факторов – количества людей, наружной температуры, погодных явлений.

Юрий Хомутский, технический редактор журнала «Мир климата»>

ИРИСОВЫЙ КЛАПАН С СЕРВОПРИВОДОМ

Благодаря уникальной конструкции дроссельных заслонок, поток воздуха можно измерять и регулировать в пределах одного устройства и одного процесса, поставляя в помещение сбалансированное количество воздуха. Результатом является постоянный комфортный микроклимат.
Дроссельные заслонки IRIS позволяют быстро и точно регулировать поток воздуха. Справляются везде там, где необходим индивидуальный контроль комфорта и прецизионное управление воздухом.
Измерение и регулировка потока для обеспечения максимального комфорта
Уравновешивание потока воздуха это обычно трудоемкое и дорогое действие при запуске вентиляционной системы. Линейное ограничение потока воздуха, характерное для линзовых дроссельных заслонок, упрощает эту операцию.
Конструкция дроссельных заслонок
Дроссельные заслонки IRIS могут функционировать как в приточных, так и вытяжных инсталляций, элиминируя риск связанный с ошибками неправильной инсталляции. Линзовые дроссельные заслонки IRIS состоят из корпуса из оцинкованной стали, линзовых плоскостей, регулирующих поток воздуха, рычага для плавного изменения диаметра отверстия. Кроме того, они оборудованы двумя наконечниками для подключения устройства, измеряющего cилу потока воздуха.
Дроссельные заслонки оборудованы уплотнителями из резины EPDM для плотного соединения с вентиляционными каналами.
Благодаря креплению двигателя возможно автоматическое управление потоком без необходимости ручного изменения настроек. Специальная плоскость предусмотрена для стабильного монтажа серводвигателя, защищая его от перемещения и повреждения.
Что отличает линзовые дроссельные заслонки от стандартных дроссельных заслонок?
Конвенциональные дроссельные заслонки увеличивают скорость потока воздуха вдоль стен каналов, генерируя притом большой шум. Благодаря линзовому закрытию дроссельных заслонок IRIS, подавление не вызывает турбуленций и шума в каналах. Это позволяет увеличить потоки или давление, по сравнению со стандартными дроссельными заслонками, без шума в инсталляции. Это большое упрощение и экономия, т.к. нет необходимости применения дополнительных звукоизолирующих элементов. Соответственное глушение шума возможно путем правильной инсталляции дроссельных заслонок в вентиляционной системе.
Для прецизионного измерения и контроля потока воздуха, дроссельные заслонки следует поместить на прямых отрезках, не ближе, чем:
1. 4 х диаметр воздуховода перед дроссельной заслонкой,
2. 1 х диаметр воздуховода за дроссельной заслонкой.
Применение линзовых дроссельных заслонок очень важно для обеспечения гигиены вентиляционной инсталляции. Благодаря возможности полного открытия, очистные роботы могут успешно попасть в каналы, соединенные с этого рода дроссельными заслонками.
Преимущества дроссельных заслонок IRIS:
1. низкий уровень шума в каналах
2. простой монтаж
3. отличное уравновешивание потока воздуха, благодаря измерительной и регулирующей единице
4. простая и быстрая регулировка потока без необходимости дополнительных устройств - применение ручки или серводвигателя
5. точное измерение потока
6. плавная регулировка - вручную с помощью рычага или автоматически благодаря применению версии с серводвигателем
7. конструкция позволяющая на простой доступ для чистящих роботов.