Выбор цикла парогазовой установки и принципиальной схемы пгу. Газотурбинные и парогазовые установки Что такое пгу в энергетике

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).

О статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Материал я позаимствовал из учебного пособия «Введение в теплоэнергетику» . Авторы этого пособия — И. З. Полещук, Н. М. Цирельман. Пособие предлагается студентам УГАТУ (Уфимский государственный авиационный технический университет) для изучения одноименной дисциплины.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности N ГТУ к расходу теплоты, полученной при сжигании топлива:

η ГТУ = N ГТУ / Q T.

Из баланса энергии следует, что N ГТУ = Q T — ΣQ П, где ΣQ П — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:


ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: η УПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При Т Г = 1400…1500 К η ГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.

В списке систем, генерирующих электрическую и тепловую энергию на современных предприятиях, числятся парогазовые установки электростанции . Они являются комбинированными по своему принципу действия и включают 2 базовых этапа:

  1. сжигание исходного топлива (газа) и за счет этого вращение газотурбинной установки;
  2. нагревание продуктами сгорания, образовавшимися в первой стадии, воды в котле-утилизаторе с образованием водяного пара, используемого в паровой турбине, активирующей паросиловой электрогенератор.

За счет рационального использования теплоты, получаемой при сжигании топлива, удается сэкономить топливо, на 10 % увеличить экономичность системы, в разы повысить КПД оборудования, на 25 % снизить расходы.

Работа парогазовой установки становится возможной за счет использования в качестве исходного топлива либо природного газа, либо продуктов нефтяной отрасли (в частности – ДТ). Конфигураций оборудования, в зависимости от его мощности и специфики применения может быть несколько. Так производители могут совмещать обе турбины на едином валу, комплектуя эту комбинацию двухприводным генератором. Преимущество такого устройства – в наличии в его арсенале 2 режимов работы: простого газового цикла и комбинированного.

Несмотря на достаточное сложное устройство, парогазовая установка (ПГУ) имеет очень важную особенность, выделяющую ее на фоне прочих систем генерации электричества. Речь идет о рекордно высоком коэффициенте полезной деятельности, составляющем в отдельных случаях свыше 60 %.

Преимущества парогазовой установки

Принцип работы парогазовой установки имеет специфический характер, она, в отличие от аналогичных систем, потребляет меньше ресурсов (в особенности – воды) на каждую единицу энергии, получаемой с ее помощью. Также эксперты отрасли отмечают, что парогазовые конструкции выделяются:

  • большей степенью экологичности (уменьшается выброс парниковых газов);
  • компактными габаритами;
  • сравнительной скоростью возведения (менее 1-го года);
  • меньшей потребностью в топливе.

Стоит отметить, что производители ПГУ не останавливаются на достигнутом. Современный парогазовый генератор эволюционирует намного быстрее, чем предыдущие версии этой техники. Сегодня активно разрабатываются конструкции, работающие на возобновляемых источниках энергии, биотопливе: отходах деревообрабатывающей промышленности и сельского хозяйства.

Типы парогазовых установок

Классифицировать парогазовые системы можно в зависимости от их конструкции и технологических особенностей:

  • по принципу действия: когенерационные, с вытеснением регенерации, с низконапорным парогенератором, с высоконапорным парогенератором, с котлами-утилизаторами;
  • по количеству газотурбинных установок различают системы с 1, 2, 3 базовыми ГТУ;
  • по виду используемого расходного вещества: газовые, жидкотопливные, работающие на биомассе и т.д.;
  • по разнообразию контуров КУ или котлов-утилизаторов, выделяют одно-, двух- и трехконтурные модули.

Многие энергетики также говорят о том, что важно различать системы, разнящиеся своим принципом действия. В частности, сегодня существует паровой электрогенератор , в котором имеется стадия промежуточного перегрева пара, а есть модификации, которые лишены этого этапа. В процессе выбора ПГУ важно обращать внимание на эти особенности работы изделий, так как они могут отразиться на продуктивности и эффективности электростанций в целом.

Применение парогазовых установок

Несмотря на тот факт, что на Западе уже давно стали использовать ПГУ для получения доступного электричества, в нашей стране данные технологии до последнего времени не были востребованы. И только с 2000-х годов у российских промышленных предприятий появился устойчивый интерес к парогазовым системам.

Согласно статистике, более 30 крупных энергоблоков, базирующихся на использовании парогазовых технологий, начали свою работу в разных регионах России на протяжении последних 10-ти лет. Эта тенденция будет лишь усиливаться как в краткосрочной, так и в долгосрочной перспективе, поскольку очень показательные результаты демонстрируют парогазовые установки, эксплуатация которых обходится не слишком дорого, а результат всегда превосходит ожидания.

Комбинированные электростанции могут использоваться для снабжения электричеством промышленных предприятий и целых населенных пунктов.

На нашем сайте Вы сможете найти парогазовые установки, которые уже прошли проверку на качество и мощность в европейских странах. Все парогазовые установки, представленные на сайте, находятся в исправном состоянии и обеспечиваются стабильную работу для промышленности.

€ 6.980.000

6 x Новые — 17,1 МВт — HFO / DFO / газогенератор.
Цена в евро: 6 980 000, — от завода за штуку
При покупке всех 6 генераторов, можно договориться о цене

Оценка электрической эффективности 47,2%.
Устройство может работать как с тяжелым топливом (HFO), так и дизельным топливом и газом.

К сожалению, переход на сооружение парогазовых ТЭЦ (ПГУ ТЭЦ) вместо паротурбинных привел к еще более резкому снижению теплофикации в общем производстве энергии. Это, в свою очередь, приводит к повышению энергоемкости ВВП и снижению конкурентоспособности отечественной продукции, а также увеличению затрат на жилищно-коммунальные нужды.

¦ высокий КПД выработки электроэнергии на ПГУ ТЭЦ по конденсационному циклу до 60%;

¦ трудности размещения ПГУ ТЭЦ в условиях плотной городской застройки, а также рост поставок топлива в города;

¦ по сложившейся традиции ПГУ ТЭЦ оснащаются, также как и паротурбинные станции, теплофикационными турбинами типа Т.

Строительство ТЭЦ с турбинами типа Р, начиная с 1990-х гг. прошлого века, было практически прекращено. В доперестроечное время около 60% тепловой нагрузки городов приходилось на долю промышленных предприятий. Их потребность в тепле для осуществления технологических процессов в течение года была достаточно стабильной. В часы утреннего и вечернего максимумов электропотребления городов пики электроснабжения сглаживались путем введения соответствующих режимов ограничения поставок электрической энергии промышленным предприятиям. Установка на ТЭЦ турбин типа Р была экономически оправдана из-за их меньшей стоимости и более эффективного расходования энергоресурсов по сравнению с турбинами типа Т. парогазовый энергоресурс топливо

Последние 20 лет из-за резкого спада промышленного производства существенно изменился режим энергоснабжения городов. В настоящее время городские ТЭЦ работают по отопительному графику, при котором летняя тепловая нагрузка составляет всего 15-20% расчетной величины. Суточный график электропотребления стал более неравномерным из-за включения электрической нагрузки населением в вечерние часы, который связан со шквальным ростом оснащения населения электрической бытовой техникой. Кроме того, выравнивание графика энергопотребления за счет введения соответствующих ограничений промышленных потребителей из-за их малой доли в общем энергопотреблении оказалось невозможным. Единственным не очень эффективным способом решения проблемы явилось сокращение вечернего максимума за счет введения сниженных тарифов в ночные часы .

Поэтому в паротурбинных ТЭЦ с турбинами типа Р, где выработка тепловой и электрической энергии жестко взаимосвязаны, применение таких турбин оказалось нерентабельным. Противодавленческие турбины производятся теперь только малой мощности для повышения эффективности работы городских паровых котельных путем перевода их в режим когенерации.

Такой установившийся подход сохранился и на сооружении ПГУ ТЭЦ. Вместе с тем при парогазовом цикле жесткая взаимосвязь между отпуском тепловой и электрической энергии отсутствует. На этих станциях с турбинами типа Р покрытие вечернего максимума электрической нагрузки может осуществляться путем временного увеличения отпуска электроэнергии в газотурбинном цикле. Кратковременное снижение отпуска тепла в систему теплоснабжения не сказывается на качестве отопления благодаря теплоаккумулирующей способности зданий и тепловой сети.

Принципиальная схема ПГУ ТЭЦ с противодавленческими турбинами включает две газовые турбины, котел-утилизатор, турбину типа Р и пиковый котел (рис. 2). Пиковый котел, который может быть установлен вне площадки ПГУ, на схеме не показан .

Из рис. 2 видно, что ПГУ ТЭЦ состоит из газотурбинной установки в составе компрессора 1, камеры сгорания 2 и газовой турбины 3. Выхлопные газы из ГТУ направляются в котел-утилизатор (КУ) 6 или в байпасную трубу 5 в зависимости от положения шибера 4 и проходят ряд теплообменников, в которых вода нагревается, пар сепарируется в барабанах низкого 7 и высокого давления 8, направляется в паротурбинную установку (ПТУ) 11. Причем насыщенный пар низкого давления поступает в промежуточный отсек ПТУ, а пар высокого давления предварительно перегревается в котле-утилизаторе и направляется в голову ПТУ Выходящий из ПТУ пар конденсируется в теплообменнике сетевой воды 12 и конденсатными насосами 13 направляется в газовой подогреватель конденсата 14, а затем направляется в деаэратор 9 и из него в КУ.

При тепловой нагрузке, не превышающей базовую, станция работает полностью по отопительному графику (АТЭЦ=1). Если тепловая нагрузка превышает базовую, включается пиковый котел. Потребное количество электроэнергии поступает от внешних источников генерации по городским электрическим сетям.

Однако возможны ситуации, когда потребность в электроэнергии превышает объем ее подачи от внешних источников: в морозные дни при росте потребления электроэнергии бытовыми нагревательными приборами; при авариях на генерирующих мощностях и в электрических сетях. В таких ситуациях величина мощности газовых турбин при традиционном подходе тесно привязана к производительности котла- утилизатора, которая в свою очередь диктуется потребностью в тепловой энергии в соответствии с отопительным графиком и может оказаться недостаточной для удовлетворения возросшего спроса на электроэнергию.

Чтобы покрыть возникший дефицит электроэнергии, газовая турбина переключается частично на сброс отработанных продуктов сгорания помимо котла-утилизатора непосредственно в атмосферу. Таким образом, ПГУ ТЭЦ переводится временно в смешанный режим - с парогазовым и газотурбинным циклами.

Известно, что газотурбинные установки обладают высокой маневренностью (скорости набора и сброса электрической мощности). Поэтому еще в советское время их предполагалось наряду с гидроаккумулирующими станциями использовать для сглаживания режима электроснабжения.

Кроме того, надо отметить, что развиваемая ими мощность увеличивается с понижением температуры наружного воздуха и именно при низких температурах в самое холодное время года наблюдается максимум электропотребления. Это показано в таблице .

При достижении мощности, составляющей более 60% от расчетной величины, выбросы вредных газов NOx и CO минимальны (рис. 3).

В межотопительный период, чтобы не допустить снижения мощности газовых турбин более чем на 40%, одна из них отключается.

Повышение энергетической эффективности ТЭЦ может быть достигнуто за счет централизованного холодоснабжения городских микрорайонов . При аварийных ситуациях на ПГУ ТЭЦ целесообразно в отдельных зданиях строить газотурбинные установки малой мощности .

В районах плотной городской застройки крупных городов при реконструкции существующих ТЭЦ с паровыми турбинами, выработавшими свой ресурс, целесообразно создавать на их базе ПГУ ТЭЦ с турбинами типа Р. В результате высвобождаются значительные площади, занятые системой охлаждения (градирни и др.), которые могут быть использованы для других целей.

Сопоставление ПГУ ТЭЦ с турбинами с противодавлением (типа Р) и ПГУ ТЭЦ с конденсационно-отборными турбинами (типа Т) позволяет сделать следующие выводы.

  • 1. И в том, и в другом варианте коэффициент полезного использования топлива зависит от доли выработки электроэнергии на базе теплового потребления в общем объеме генерации.
  • 2. В ПГУ ТЭЦ с турбинами типа Т потери тепловой энергии в контуре охлаждения конденсата имеют место в течение всего года; наибольшие потери - в летний период, когда размер теплового потребления ограничен только горячим водоснабжением.
  • 3. В ПГУ ТЭЦ с турбинами типа Р КПД станции снижается только в ограниченный промежуток времени, когда необходимо покрыть возникший дефицит в электроснабжении.
  • 4. Маневренные характеристики (скорости набора и сброса нагрузки) газовых турбин многократно выше характеристик паровых турбин.

Таким образом, для условий строительства станций в центрах больших городов ПГУ ТЭЦ с противодавленческими турбинами (типа Р) превосходят парогазовые ТЭЦ с конденсационноотборными турбинами (типа Т) по всем показателям. Для их размещения требуется значительно меньшая территория, они более экономично расходуют топливо и их вредное воздействие на окружающую среду также меньше.

Однако, для этого необходимо внести соответствующие изменения в нормативную базу по проектированию парогазовых станций.

Практика последних лет показывает, что инвесторами, сооружающими загородные ПГУ ТЭЦ и на достаточно свободных территориях, приоритет отдается выработке электроэнергии, а отпуск тепла рассматривается ими как побочный вид деятельности. Объясняется это тем, что КПД станций даже в конденсационном режиме может достигать 60%, а сооружение теплотрасс требует дополнительных затрат и многочисленных согласований с разными структурами. В итоге коэффициент теплофикации АТЭЦ может быть меньше 0,3.

Поэтому при проектировании ПГУ ТЭЦ нецелесообразно для каждой отдельной станции закладывать в техническом решении оптимальное значение АТЭЦ. Задача заключается в нахождении оптимальной доли теплофикации в системе теплоснабжения всего города.

Сейчас вновь стала актуальной разработанная в советское время концепция строительства мощных ТЭЦ в местах добычи топлива, вдали от больших городов. Это диктуется как увеличением доли использования местных видов топлива в ТЭК регионов, так и созданием новых конструкций теплопроводов (воздушная прокладка) с практически ничтожным падением температурного потенциала при транспортировке теплоносителя.

Подобные ТЭЦ могут создаваться как на основе паротурбинного цикла с непосредственным сжиганием местного топлива, так и парогазового цикла с использованием газа, получаемого на газогенераторных установках.


Пневмогидроусилитель привода сцепления служит для уменьшения усилия, прикладываемого к педали сцепления водителем.

Он состоит из:

  • гидравлического цилиндра с поршнем, штоком и пружиной;
  • пневматического цилиндра с поршнем, штоком (общий с поршнем гидроцилиндра) и возвратной пружиной;
  • следящего механизма, состоящего из следящего поршня с манжетой, диафрагмы (зажата между двумя частями корпуса), в центре которой крепится седло выпускного клапана, возвратной пружины диафрагмы;
  • выпускного и впускного клапанов (крепятся на одном штоке) с возвратной пружиной;
  • седла впускного клапана;
  • отверстия, закрытого уплотнителем от попадания грязи, соединяющего надпоршневую полость пневмоцилиндра с окружающей средой.

При включенном сцеплении общий шток прижат к поршням гидроцилиндра и пневмоцилиндра. Поршень следящего механизма занимает положение, соответствующее открытому выпускному клапану, соединяющему надпоршневое пространство пневмоцилиндра с окружающей средой и закрытому впускному клапану.

При выключении сцепления рабочая жидкость из главного цилиндра поступает в гидроцилиндр пневмогидроусилителя, и одновременно по каналу к поршню следящего механизма. Давление жидкости перемещает поршень в сторону седла выпускного клапана. Диафрагма, прогибаясь, перемещает седло к выпускному клапану, который садится в седло, изолируя надпоршневое пространство пневмоцилиндра от окружающей среды.

Далее усилие от выпускного клапана через шток передается на впускной клапан, который открывается, и сжатый воздух по каналу поступает в надпоршневое пространство пневмоцилиндра. Поршень пневмоцилиндра, перемешаясь, воздействует на шток поршня гидроцилиндра. Поршень передает усилие на толкатель, который воздействует на рычаг вилки выключения сцепления. Часть сжатого воздуха поступает в полость диафрагмы.

Таким образом, следящий поршень находится под действием двух противоположно направленных сил: действие рабочей жидкости с одной стороны и сжатого воздуха с другой. Поршни следящего механизма и пневмоцилиндра подобраны так, чтобы обеспечить необходимое снижение усилия на педаль сцепления.

При отпускании педали сцепления давление рабочей жидкости падает, и все детали под действием возвратных пружин возвращаются в исходное положение, надпоршневое пространство пневмоцилиндра через открытый выпускной клапан сообщается с окружающей средой.

При выходе из строя пневмосистемы перемещение поршня гидроцилиндра осуществляется только под давлением рабочей жидкости.