Фундаментальные исследования. Измерение теплопроводности. Термокондуктометрические датчики В этом случае уравнение теплового потока имеет вид

Цель работы : изучение методики экспериментального определения коэффициента

теплопроводности твердых материалов методом пластины.

Задание :1. Определить коэффициент теплопроводности исследуемого материала.

2. Определить зависимость коэффициента теплопроводности от температуры

исследуемого материала.

    ОСНОВНЫЕ ПОЛОЖЕНИЯ.

Теплообмен – это самопроизвольный необратимый процесс переноса теплоты в пространстве при наличии разности температур. Существуют три основных способа переноса теплоты, существенно различающихся между собой по своей физической природе:

    теплопроводность;

    конвекция;

    тепловое излучение.

На практике теплота, как правило, переносится одновременно несколькими способами, но знание этих процессов невозможно без изучения элементарных процессов теплообмена.

Теплопроводностью называется процесс передачи теплоты, обусловленный тепловым движением микрочастиц. В газах и жидкостях перенос теплоты теплопроводностью осуществляется посредством диффузии атомов и молекул. В твердых телах свободное движение атомов и молекул по всему объёму вещества невозможно и сводится только к их колебательному движению относительно определенных положений равновесия. Поэтому процесс теплопроводности в твердых телах обусловлен возрастанием амплитуды этих колебаний, распространяемым в объёме тела за счёт возмущения силовых полей между колеблющимися частицами. В металлах перенос теплоты теплопроводностью происходит не только за счет колебаний ионов и атомов, находящихся в узлах кристаллической решетки, но и за счет движения свободных электронов, образующих так называемый «электронный газ». В связи с наличием в металлах дополнительных носителей тепловой энергии в виде свободных электронов теплопроводность металлов существенно выше, чем твердых диэлектриков.

При изучении процесса теплопроводности используются следующие основные понятия:

Количество теплоты (Q ) тепловая энергия, проходящая за всё время процессачерез поверхность произвольной площадьюF. В системе СИ измеряется в джоулях (Дж).

Тепловой поток (тепловая мощность) (Q ) – количество теплоты, проходящее в единицу времени через поверхность произвольной площадьюF.

В системе СИ тепловой поток измеряется в ваттах (Вт).

Плотность теплового потока (q ) – количество теплоты, проходящее в единицу времени через единицу поверхности.

В системе СИ измеряется в Вт/м 2 .

Температурное поле – совокупность значений температуры в данный момент времени во всех точках пространства, занятого телом. Если температура во всех точках температурного поля с течением времени не изменяется, то такое поле называетсястационарным , если изменяется, то –нестационарным .

Поверхности, образованные точками, имеющими одинаковую температуру, называются изотермическими .

Температурный градиент (grad T ) – вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно, определяемый как предел отношения изменения температуры между двумя изотермическими поверхностями к расстоянию между ними по нормали, когда это расстояние стремится к нулю. Или иными словами температурный градиент - это производная от температуры по этому направлению.

Температурный градиент характеризует скорость изменения температуры в направлении по нормали к изотермической поверхности.

Процесс теплопроводности характеризует основной закон теплопроводности – закон Фурье (1822 г.). Согласно этому закону плотность теплового потока, передаваемого посредством теплопроводности, прямо пропорциональна температурному градиенту:

где - коэффициент теплопроводности вещества, Вт/(мград).

Знак (-) показывает, что тепловой поток и температурный градиент противоположны по направлению.

Коэффициент теплопроводности показывает какое количество теплоты передается в единицу времени через единицу поверхности при температурном градиенте равном единице.

Коэффициент теплопроводности является важной теплофизической характеристикой материала и знание его необходимо при выполнении тепловых расчетов, связанных с определением тепловых потерь через ограждающие конструкции зданий и сооружений, стенки машин и аппаратов, расчете тепловой изоляции, а также при решении множества других инженерных задач.

Другой важный закон теплопроводности – закон Фурье-Кирхгофа , определяющий характер изменения температуры в пространстве и во времени при теплопроводности. Другое его название –дифференциальное уравнение теплопроводности , потому что оно получено методами теории математического анализа на основе закона Фурье. Для 3-х мерного нестационарного температурного поля дифференциальное уравнение теплопроводности имеет следующий вид:

,

где
- коэффициент температуропроводности, характеризующий теплоинерционные свойства материала,

,C p ,- соответственно коэффициент теплопроводности, изобарная теплоёмкость и плотность вещества;

- оператор Лапласа.

Для одномерного стационарного температурного поля (
) дифференциальное уравнение теплопроводности приобретает простой вид

Интегрируя уравнения (1) и (2), можно определить плотность теплового потока через тело и закон изменения температуры внутри тела при теплообмене теплопроводностью. Для получения решения необходимо задание условий однозначности .

Условия однозначности – это дополнительные частные данные, характеризующие рассматриваемую задачу. Они включают:

Геометрические условия, характеризующие форму и размеры тела;

Физические условия, характеризующие физические свойства тела;

    временные (начальные) условия, характеризующие распределение температуры в начальный момент времени;

    граничные условия, характеризующие особенности теплообмена на границах тела. Различают граничные условия 1-го, 2-го и 3-го рода.

При граничных условиях 1-го рода задано распределение температур на поверхности тела. В этом случае требуется определить плотность теплового потока через тело.

При граничных условиях 2-го рода заданы плотность теплового потока и температура одной из поверхностей тела. Требуется определить температуру другой поверхности.

При граничных условиях 3-го рода должны быть известны условия теплоотдачи между поверхностями тела и средами, омывающими их снаружи. По этим данным определяется плотность теплового потока. Этот случай относится к совместному процессу переноса теплоты теплопроводностью и конвекцией, называемомутеплопередачей .

Рассмотрим наиболее простой пример для случая теплопроводности через плоскую стенку. Плоской называют стенку, толщина которой значительно меньше двух других её размеров – длины и ширины. В этом случае условия однозначности могут быть заданы следующим образом:

    геометрические : известна толщина стенки. Температурное поле одномерное, следовательно температура изменяется только в направлении оси Х и тепловой поток направлен по нормали к поверхностям стенки;.

    физические : известен материал стенки и его коэффициент теплопроводности, причем для всего тела=const;

    временные : температурное поле во времени не изменяется, т.е. является стационарным;

    граничные условия :1-го рода, температуры стенки составляютT 1 иT 2 .

Требуется определить закон изменения температуры по толщине стенки T=f(Х) и плотность теплового потока через стенкуq.

Для решения задачи используем уравнения (1) и (3). С учетом принятых граничных условий (при x=0T=T 1 ; приx=T=T 2) после двойного интегрирования уравнения (3) получаем закон изменения температуры по толщине стенки

,

Распределение температуры в плоской стенке показано на рис.1.

Рис.1. Распределение температуры в плоской стенке.

Плотность теплового потока тогда определяется согласно выражению

,

Определение коэффициента теплопроводности теоретическим путем не может дать точности результата, необходимой для современной инженерной практики, поэтому единственным надежным способом остается его экспериментальное определение.

Один из известных экспериментальных методов определения являетсяметод плоского слоя . Согласно данному методу коэффициент теплопроводности материала плоской стенки может быть определен на основе уравнения (5)

;

В этом случае полученное значение коэффициента теплопроводности относится к среднему значению температуры T m = 0,5 (T 1 +T 2).

Несмотря на свою физическую простоту, практическая реализация данного метода имеет свои сложности, связанные с трудностью создания одномерного стационарного температурного поля в исследуемых образцах и учётом тепловых потерь.

    ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА.

Определение коэффициента теплопроводности проводится на лабораторной установке, основанной на методе имитационного моделирования реальных физических процессов. Установка состоит из ПЭВМ, связанной с макетом рабочего участка, который отображается на экране монитора. Рабочий участок создан по аналогии с реальным и его схема представлена на рис. 2.

Рис.2. Схема рабочего участка установки

Рабочий участок состоит из 2-х фторопластовых образцов 12, выполненных в форме дисков толщиной = 5 мм и диаметромd= 140 мм. Образцы помещены между нагревателем 10 высотойh= 12 мм и диаметромd н = 146 мм и холодильником 11, охлаждаемым водой. Создание теплового потока осуществляется нагревательным элементом с электрическим сопротивлениемR= 41 Ом и холодильником 11 со спиральными канавками для направленной циркуляции охлаждающей воды. Таким образом, тепловой поток, проходящий через исследуемые фторопластовые образцы, уносится протекающей через холодильник водой. Часть теплоты от нагревателя уходит через торцевые поверхности в окружающую среду, поэтому для уменьшения этих радиальных потерь предусмотрен теплоизоляционный кожух 13, выполненный из асбоцемента ( к = 0,08 Вт/(мград)). Кожух высотойh к = 22 мм выполнен в виде полого цилиндра с внутренним диаметромd н = 146 мм и внешним диаметромd к = 190 мм. Температура измеряется с помощью семи хромель-копелевых термопар (тип ХК) поз. 1…7, установленных в различных точках рабочего участка. Переключатель температурных датчиков 15 позволяет последовательно измерять термо-ЭДС всех семи температурных датчиков. Термопара 7 установлена на внешней поверхности теплоизоляционного кожуха для определения тепловых утечек через него.

    ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ.

3.1. Выбирается температурный режим работы установки посредством задания температуры горячей поверхности пластин T г в пределах от 35С до 120С.

3.2. На пульте установки последовательно включаются тумблеры питания индикаторных приборов, регистрирующих напряжение на электронагревателе U, термо-ЭДС температурных датчиковEи тумблер включения нагрева.

3.3. Плавно вращая ручку реостата, устанавливается нужное напряжение на нагревателе. Реостат выполнен в шаговом варианте, поэтому напряжение изменяется ступенчато. Напряжение Uи температураT г должны находиться в соответствии друг другу согласно зависимости, представленной на рис.3.

Рис.3. Рабочая зона нагрева.

3.4. Путем последовательного опроса датчиков температуры с помощью переключателя 15 определяются значения термо-ЭДС семи термопар, которые вместе со значением Uзаносятся в протокол эксперимента (см. табл.1). Регистрация показаний производится по индикаторным приборам на пульте управления, показания которых дублируются на мониторе ПЭВМ.

3.5. По окончании опыта все регулирующие органы установки переводятся в исходное положение.

3.6. Проводятся повторные опыты (всего их количество должно быть не менее 3-х) и при других значениях T г в порядке, предусмотренном п.п. 3.1…3.5.

    ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

4.1. По градуировочной характеристике хромель-копелевой термопары показания температурных датчиков переводятся в градусы по шкале Кельвина..

4.2. Определяются средние температуры внутренней горячей и внешней холодной поверхностей образцов

где i– номер термопары.

4.3. Определяется полный тепловой поток, создаваемый электрическим нагревателем

, Вт

где U– напряжение электрического тока, В;

R= 41 Ом – сопротивление электрического нагревателя.

4.4. Определяется тепловой поток, теряемый в результате теплопередачи через кожух

где k– коэффициент, характеризующий процесс переноса теплоты через кожух.

, Вт/(м 2 град)

где  к = 0,08 Вт/(мград) – коэффициент теплопроводности материала кожуха;

d н = 0,146 м – наружный диаметр нагревателя;

d к = 0,190 м – внешний диаметр кожуха;

h н = 0,012 м – высота нагревателя;

h к = 0,022 м – высота кожуха.

T т – температура наружной поверхности кожуха, определяемая 7-й термопарой

4.5. Определяется тепловой поток, проходящий через исследуемые образцы посредством теплопроводности

, Вт

4.6. Определяется коэффициент теплопроводности исследуемого материала

, Вт/(мград)

где Q  - тепловой поток, проходящий через исследуемый образец посредством теплопроводности, Вт;

 = 0,005 м – толщина образца;

- площадь поверхности одного образца, м 2 ;

d= 0,140 м – диаметр образца;

T г,T х – температуры соответственно горячей и холодной поверхностей образца, К.

4.7. Коэффициент теплопроводности зависит от температуры, поэтому полученные значения относят к средней температуре образца

Результаты обработки опытных данных заносятся в таблицу 1.

Таблица 1

Результаты измерений и обработки опытных данных

Показания термопар, мВ/К

Е 1

4.8. Используя графоаналитический метод обработки полученных результатов, получают зависимость коэффициента теплопроводности исследуемого материала от средней температуры образцаT m в виде

где  0 иb- определяются графическим путем на основании анализа графика зависимости=f(T m).

    КОНТРОЛЬНЫЕ ВОПРОСЫ

    Какие существуют основные способы переноса теплоты?

    Что называется теплопроводностью?

    В чем особенности механизма теплопроводности в проводниках и твердых диэлектриках?

    Какие законы описывают процесс теплопроводности?

    Что называется плоской стенкой?

    Что такое граничные условия?

    Каков характер изменения температуры в плоской стенке?

    В чем заключается физический смысл коэффициента теплопроводности?

    Для чего нужно знание коэффициента теплопроводности различных материалов и как определяется его значение?

    В чем заключаются методические особенности метода плоского слоя?

ИСЛЕДОВАНИЕ ТЕПЛООТДАЧИ ПРИ СВОБОДНОЙ КОНВЕКЦИИ

Цель работы : изучить закономерности конвективного теплообмена на примере теплоотдачи при свободной конвекции для случаев поперечного и продольного обтекания нагретой поверхности. Приобрести навыки обработки результатов опытов и представления их в обобщенном виде.

Задание :

1. Определить экспериментальные значения коэффициентов теплоотдачи от горизонтального цилиндра и вертикального цилиндра к среде при свободной конвекции.

2. Путем обработки опытных данных получить параметры критериальных уравнений, характеризующих процесс свободной конвекции относительно горизонтальной и вертикальной поверхности.

    ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ.

Существуют три основных способа переноса теплоты, существенно отличающихся друг от друга по своей физической природе:

    теплопроводность;

    конвекция;

    тепловое излучение.

При теплопроводности носителями тепловой энергии являются микрочастицы вещества – атомы и молекулы, при тепловом излучении – электромагнитные волны.

Конвекция – это способ переноса теплоты за счёт перемещения макроскопических количеств вещества из одной точки пространства в другую.

Таким образом, конвекция возможна только в средах, обладающих свойством текучести – газах и жидкостях. В теории теплообмена они обобщенно обозначаются термином «жидкость» , не проводя различия, если это отдельно не требуется оговаривать, между капельными жидкостями и газами. Процесс переноса теплоты конвекцией, как правило, сопровождается теплопроводностью. Такой процесс называетсяконвективным теплообменом .

Конвективный теплообмен – это совместный процесс переноса теплоты конвекцией и теплопроводностью.

В инженерной практике чаще всего имеют дело с процессом конвективного теплообмена между поверхностью твердого тела (например, поверхность стенки печи, нагревательного прибора и т.п.) и текучей средой, омывающей эту поверхность. Этот процесс называется теплоотдачей .

Теплоотдача – частный случай конвективного теплообмена между поверхностью твердого тела (стенкой) и омывающей её текучей средой.

Различают вынужденную и свободную (естественную) конвекцию.

Вынужденная конвекция происходит под действием сил давления, которые создаются принудительно, например насосом, вентилятором и т.п.

Свободная или естественная конвекция происходит под действием массовых сил, имеющих различную природу: гравитационных, центробежных, электромагнитных и др.

На Земле свободная конвекция происходит в условиях действия силы тяжести, поэтому её называют тепловой гравитационной конвекцией . Движущей силой процесса в этом случае является подъёмная сила, которая возникает в среде при наличии неоднородности в распределении плотности внутри рассматриваемого объёма. При теплообмене такая неоднородность возникает за счет того, что отдельные элементы среды могут находиться при различной температуре. При этом более нагретые, а значит, менее плотные элементы среды под действием подъёмной силы будут перемещаться вверх, перенося вместе с собой теплоту, а более холодные, и значит, более плотные элементы среды будут перетекать на освободившееся место, как это показано на рис. 1.

Рис. 1. Характер движения потоков в жидкости при свободной конвекции

Если в этом месте расположен постоянный источник теплоты, то при нагреве плотность нагреваемых элементов среды уменьшится, и они также начнут всплывать вверх. Так, пока будет иметь место разность плотностей отдельных элементов среды, будет продолжаться их круговорот, т.е. будет продолжаться свободная конвекция. Свободная конвекция, происходящая в больших объёмах среды, где ничто не препятствует развитию конвективных потоков, называется свободной конвекцией в неограниченном пространстве . Свободная конвекция в неограниченном пространстве, например, имеет место при отоплении помещений, нагреве воды в водогрейных котлах и многих других случаях. Если развитию конвективных потоков препятствуют стенки каналов или прослоек, которые заполнены текучей средой, то процесс в этом случае называетсясвободной конвекцией в ограниченном пространстве . Такой процесс имеет место, например, при теплообмене внутри воздушных прослоек между оконными рамами.

Основной закон, описывающий процесс конвективного теплообмена, – закон Ньютона-Рихмана . В аналитической форме для стационарного температурного режима теплообмена он имеет следующий вид:

,

где
- элементарное количество теплоты, отдаваемое за элементарный промежуток времени
от элементарной поверхности площадью
;

- температура стенки;

- температура жидкости;

- коэффициент теплоотдачи.

Коэффициент теплоотдачи показывает какое количество теплоты отдается в единицу времени от единицы поверхности при разности температур между стенкой и жидкостью в один градус. Единица измерения коэффициента теплоотдачи в системе СИ – Вт/м 2 ∙град. При установившемся стационарном процессе коэффициент теплоотдачи можно определить из выражения:

, Вт/м 2 ∙град

где - тепловой поток, Вт;

- площадь поверхности теплообмена, м 2 ;

- температурный напор между поверхностью и жидкостью, град.

Коэффициент теплоотдачи характеризует интенсивность теплообмена между стенкой и омывающей её жидкостью. По своему физическому характеру конвективный теплообмен является весьма сложным процессом. Коэффициент теплоотдачи зависит от очень большого количества разнообразных параметров – физических свойств жидкости, характера течения жидкости, скорости течения жидкости, размера и формы канала, а также множества других факторов. В связи с этим невозможно дать общую зависимость для нахождения коэффициента теплоотдачи теоретическим путем

Коэффициент теплоотдачи наиболее точно и надежно может быть определен экспериментальным путем на основе уравнения (2). Однако в инженерной практике при расчете процессов теплообмена в различных технических устройствах, как правило, не представляется возможным выполнить опытное определение значения коэффициента теплоотдачи в условиях реального натурного объекта по причине сложности и дороговизны постановки такого эксперимента. В этом случае для решения задачи определения на помощь приходиттеория подобия .

Основное практическое значение теории подобия заключается в том, что она позволяет обобщить результаты отдельного опыта, проведенного на модели в лабораторных условиях, на весь класс реальных процессов и объектов, подобных процессу, изученному на модели. Понятие подобия, хорошо известное в отношении геометрических фигур, может быть распространено и на любые физические процессы и явления.

Класс физических явлений – это совокупность явлений, которые могут быть описаны одной общей системой уравнений и имеющие одинаковую физическую природу.

Единичное явление – это часть класса физических явлений, отличающихся определенными условиями однозначности (геометрическими, физическими, начальными, граничными).

Подобные явления – группа явлений одного класса с одинаковыми условиями однозначности, кроме числовых значений величин, содержащихся в этих условиях.

Теория подобия основана на том, что размерные физические величины, характеризующие явление, можно объединить в безразмерные комплексы , причем так, что число этих комплексов будет меньше, чем число размерных величин. Полученные безразмерные комплексы называютсякритериями подобия . Критерии подобия имеют определенный физический смысл и отражают влияние не одной физической величины, а всей их совокупности, входящей в критерий, что существенно упрощает анализ изучаемого процесса. Сам процесс в этом случае можно представить в виде аналитической зависимости
между критериями подобия
, характеризующими его отдельные стороны. Такие зависимости называютсякритериальными уравнениями . Критерии подобия получили названия по именам ученых, которые внесли существенный вклад в развитие гидродинамики и теории теплообмена – Нуссельта, Прандтля, Грасгофа, Рейнольдса, Кирпичева и других.

Теория подобия базируется на 3-х теоремах подобия.

1-я теорема:

Подобные между собой явления имеют одинаковые критерии подобия .

Эта теорема показывает, что в опытах нужно измерять лишь те физические величины, которые содержатся в критериях подобия.

2-я теорема:

Исходные математические уравнения, характеризующие данное физическое явление, всегда могут быть представлены в виде зависимости между критериями подобия, характеризующими это явление .

Эти уравнения называются критериальными . Эта теорема показывает, что результаты опытов следует представлять в виде критериальных уравнений.

3-я теорема.

Подобны те явления, у которых критерии подобия, составленные из условий однозначности, равны .

Эта теорема определяет условие необходимое для установления физического подобия. Критерии подобия, составленные из условий однозначности, называются определяющими . Они определяют равенство всех остальных илиопределяемых критериев подобия, что собственно является уже предметом 1-й теоремы подобия. Таким образом, 3-я теорема подобия развивает и углубляет 1-ю теорему.

При изучении конвективного теплообмена чаще всего используются следующие критерии подобия.

Критерий Рейнольдса (Re ) – характеризует соотношение между силами инерции и силами вязкого трения, действующими в жидкости. Значение критерия Рейнольдса характеризует режим течения жидкости при вынужденной конвекции.

,

где - скорость движения жидкости;

- коэффициент кинематической вязкости жидкости;

- определяющий размер.

Критерий Грасгофа (Gr ) – характеризует соотношение между силами вязкого трения и подъёмной силой, действующими в жидкости, при свободной конвекции. Значение критерия Грасгофа характеризует режим течения жидкости при свободной конвекции.

,

где - ускорение свободного падения;

- определяющий размер;

- температурный коэффициент объёмного расширения жидкости (для газов
, где- определяющая температура по шкале Кельвина);

- температурный напор между стенкой и жидкостью;

- соответственно температура стенки и жидкости;

- коэффициент кинематической вязкости жидкости.

Критерий Нуссельта (Nu ) – характеризует соотношение между количеством теплоты, передаваемой посредством теплопроводности и количеством теплоты, передаваемой посредством конвекции при конвективном теплообмене между поверхностью твердого тела (стенкой) и жидкостью, т.е. при теплоотдаче.

,

где - коэффициент теплоотдачи;

- определяющий размер;

- коэффициент теплопроводности жидкости на границе стенки и жидкости.

Критерий Пекле (Pe ) – характеризует соотношение между количеством теплоты, принимаемым (отдаваемым) потоком жидкости и количеством теплоты, передаваемым (отдаваемым) посредством конвективного теплообмена.

,

где - скорость потока жидкости;

- определяющий размер;

- коэффициент температуропроводности;

- соответственно коэффициент теплопроводности, изобарная теплоёмкость, плотность жидкости.

Критерий Прандтля (Pr ) – характеризует физические свойства жидкости.

,

где - коэффициент кинематической вязкости;

- коэффициент температуропроводности жидкости.

Из рассмотренных критериев подобия видно, что наиболее важный при расчете процессов конвективного теплообмена параметр, характеризующий интенсивность процесса, а именно, коэффициент теплоотдачи входит в выражение для критерия Нуссельта. Это обусловило то, что для решения задач конвективного теплообмена инженерными методами, основанными на использовании теории подобия, этот критерий является наиболее важным из определяемых критериев. Значение коэффициента теплоотдачи в этом случае определяется согласно следующему выражению

В связи с этим критериальные уравнения обычно записываются в форме решения относительно критерия Нуссельта и имеют вид степенной функции

где
- значения критериев подобия, характеризующих разные стороны рассматриваемого процесса;

- числовые константы, определяемые на основе экспериментальных данных, полученных при изучении класса подобных явлений на моделях опытным путем.

В зависимости от вида конвекции и конкретных условий процесса набор критериев подобия, входящих в критериальное уравнение, значения констант и поправочные множители могут быть различны.

При практическом применении критериальных уравнений важным является вопрос правильного выбора определяющего размера и определяющей температуры. Определяющая температура необходима для правильного определения значений физических свойств жидкости, используемых при расчете значений критериев подобия. Выбор определяющего размера зависит от взаимного расположения потока жидкости и омываемой поверхности, т. е. от характера её обтекания. При этом следует руководствоваться имеющимися рекомендациями для следующих характерных случаев.

    Вынужденная конвекция при движении жидкости внутри круглой трубы.

- внутренний диаметр трубы.

    Вынужденная конвекция при движении жидкости в каналах произвольного сечения.

- эквивалентный диаметр,

где - площадь поперечного сечения канала;

- периметр сечения.

    Поперечное обтекание круглой трубы при свободной конвекции (горизонтальная труба (см. рис.2) при тепловой гравитационной конвекции)

- наружный диаметр трубы.

Рис.2. Характер обтекания горизонтальной трубы при тепловой гравитационной конвекции

    Продольное обтекание плоской стенки (трубы) (см. рис. 3) при тепловой гравитационной конвекции.

- высота стенки (длина трубы).

Рис. 3. Характер обтекания вертикальной стенки (трубы) при тепловой гравитационной конвекции.

Определяющая температура необходима для корректного определения теплофизических свойств среды, значения которых изменяются в зависимости от температуры.

При теплоотдаче в качестве определяющей температуры принимается среднее арифметическое между температурой стенки и жидкости

При конвективном теплообмене между отдельными элементами среды внутри рассматриваемого объёма в качестве определяющей температуры принимается среднее арифметическое между температурами элементов среды, участвующих в теплообмене.

В настоящей работе рассмотрены порядок проведения лабораторного эксперимента и методика получения критериальных уравнений для 2-х характерных случаев обтекания нагретой поверхности (поперечного и продольного) при свободной конвекции различных газов относительно горизонтального и вертикального цилиндров.

    ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

До настоящего времени не выработано единой классификации, что связано с многообразием существующих методов. Всем известные экспериментальные методы измерения коэффициента теплопроводности материалов разделяются на две большие группы: стационарные и нестационарные. В первом случае качество расчетной формулы используются частные решения уравнения теплопроводности

при условии, во втором - при условии, где T - температура; ф - время; - коэффициент температуропроводности; л - коэффициент теплопроводности; С - удельная теплоемкость; г - плотность материала; - оператор Лапласа, записанный в соответствующей системе координат; - удельная мощность объемного источника тепла.

Первая группа методов основана на использовании стационарного теплового режима; вторая - нестационарного теплового режима. Стационарные методы определения коэффициента теплопроводности по характеру измерений являются прямыми (т.е. непосредственно определяется коэффициент теплопроводности) и делятся на абсолютные и относительные. В абсолютных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемых параметров для расчета абсолютной величины оказывается недостаточно. Здесь возможны два случая. Первый - наблюдение за изменением коэффициента теплопроводности по отношению к исходному, принятому за единицу. Второй случай - применение эталонного материала с известными тепловыми свойствами. При этом в расчетной формуле используется коэффициент теплопроводности эталона. Относительные методы имеют некоторое преимущество перед абсолютными методами, так как более просты. Дальнейшее деление стационарных методов можно провести по характеру нагрева (внешний, объемный и комбинированный) и по виду изотерм поля температуры в образцах (плоские, цилиндрические, сферические). Подгруппа методов с внешним нагревом включает все методы, в которых используются наружные (электрические, объемные и др.) нагреватели и нагрев поверхностей образца тепловым излучением или электронной бомбардировкой. Подгруппа методов с объемным нагревом объединяет все методы, где используется нагрев током, пропускаемым через образец, нагрев исследуемого образца от нейтронного или г-излучения или токами сверхвысокой частоты. К подгруппе методов с комбинированным нагревом могут быть отнесены методы, в которых одновременно используется внешний и объемный нагрев образцов, или промежуточный нагрев (например, токами высокой частоты).

Во всех трех подгруппах стационарных методов поле температуры

может быть различным.

Плоские изотермы образуются в случае, когда тепловой поток направлен вдоль оси симметрии образца. Методы с использованием плоских изотерм в литературе называются методами с осевым или продольным потоком тепла, а сами экспериментальные установки - плоскими приборами.

Цилиндрические изотермы соответствуют распространению теплового потока по направлению радиуса цилиндрического образца. В случае, когда тепловой поток направлен по радиусу сферического образца, возникают сферические изотермы. Методы, использующие такие изотермы, называются сферическими, а приборы - шаровыми.

Способность материалов и веществ проводить тепло называется теплопроводностью (X,) и выражается коли­чеством тепла, проходящим через стенку площадью 1 м2, Толщиной 1 м за 1 ч при разности температур на противо­положных поверхностях стенки в 1 град. Единица изме­рения теплопроводности - Вт/(м-К) или Вт/(м-°С).

Теплопроводность материалов определяют

Где Q - количество тепла (энергии), Вт; F - площадь сечения материала (образца), перпендикулярная направ­лению теплового потока, м2; At- разность температур на противоположных поверхностях образца, К или °С; б- толщина образца, м.

Теплопроводность - один из главных показателей свойств теплоизоляционных материалов. Этот показатель зависит от целого ряда факторов: общей пористости ма­териала, размера и формы пор, вида твердой фазы, вида газа, заполняющего поры, температуры и т. п.

Зависимость теплопроводности от этих факторов в наиболее универсальном виде выражают уравнением Лееба:

_______ Ђs ______ - і

Где Кр--теплопроводность материала; Xs - теплопровод­ность твердой фазы материала; Рс - количество пор, на­ходящихся в сечении, перпендикулярном потоку тепла; Pi -количество пор, находящихся в сечении, параллель­ном потоку тепла; б - радиальная постоянная; є - излу­чаемость; v - геометрический фактор, влияющий на. из­лучение внутри пор; Tt - средняя абсолютная температу­ра; d - средний диаметр пор.

Знание теплопроводности того или иного теплоизоля­ционного материала позволяет правильно оценить его теплоизоляционные качества и рассчитать толщину теп­лоизоляционной конструкции из этого материала по за­данным условиям.

В настоящее время существует ряд методов определе­ния теплопроводности материалов, основанных на изме­рении стационарного и нестационарного потоков тепла.

Первая группа методов позволяет проводить измере­ния в широком диапазоне температур (от 20 до 700° С) и получать более точные результаты. Недостатком мето­дов измерения стационарного потока тепла является большая продолжительность опыта, измеряемая часами.

Вторая группа методов позволяет проводить экспери­мент в течение нескольких минут (до 1 ч), но зато при­годна для определения теплопроводности материалов лишь при сравнительно низких температурах.

Измерение теплопроводности строительных материа­лов этим методом производят, пользуясь прибором, изо­браженным на рис. 22. При этом с помощью малоинер­ционного тепломера производят измерение стационарного теплового потока, проходящего через испытуемый обра­зец материала.

Прибор состоит из плоского электронагревателя 7 и малоинерционного тепломера 9, установленного на рас­стоянии 2 мм от поверхности холодильника 10, через ко­торый непрерывно протекает вода с постоянной темпера­турой. На поверхностях нагревателя и тепломера зало­жены термопары 1,2,4 и 5. Прибор помещен в металли­ческий кожух 6, заполненный теплоизоляционным мате­риалом. Плотное прилегание образца 8 к тепломеру и на­гревателю обеспечивается прижимным приспособлением 3. Нагреватель, тепломер и холодильник имеют форму диска диаметром 250 мм.

Тепловой поток от нагревателя через образец и мало­инерционный тепломер передается холодильнику. Вели­чина теплового потока, проходящего через центральную часть образца, измеряется тепломером, представляющим собой термобатарею на паранитовом диске, или тепло - мером с воспроизводящим элементом, в который вмонти­рован плоский электрический нагреватель.

Прибором можно измерять теплопроводность при тем­пературе на горячей поверхности образца от 25 до 700° С.

В комплект прибора входят: терморегулятор типа РО-1, потенциометр типа КП-59, лабораторный авто­трансформатор типа РНО-250-2, переключатель термо­пар МГП, термостат ТС-16, амперметр технический пе­ременного тока до 5 А и термос.

Образцы материала, подвергающиеся испытанию, должны иметь в плане форму круга диаметром 250 мм. Толщина образцов должна быть не более 50 и не менее 10 мм. Толщину образцов измеряют с точностью до 0,1 мм и определяют как среднее арифметическое из ре­зультатов четырех измерений. Поверхности образцов должны быть плоскими и параллельными.

При испытании волокнистых, сыпучих, мягких и полу­жестких теплоизоляционных материалов отобранные об­разцы помещают в обоймы диаметром 250 мм и высотой 30-40 мм, изготовленные из асбестового картона толщи­ной 3-4 мм.

Плотность отобранной пробы, находящейся под удель­ной нагрузкой, должны быть равномерна по всему объему и соответствовать средней плотности испытуемого мате­риала.

Образцы перед испытанием должны быть высушены до постоянной массы при температуре 105-110° С.

Подготовленный к испытаниям образец укладывают на тепломер и прижимают нагревателем. Затем устанав­ливают терморегулятор нагревателя прибора на задан­ную температуру и включают нагреватель в сеть. После установления стационарного режима, при котором в тече­ние 30 мин показания тепломера будут постоянными, от­мечают показания термопар по шкале потенциометра.

При применении малоинерционного тепломера с вос­производящим элементом переводят показания тепломе­ра на нуль-гальванометр и включают ток через реостат, и миллиамперметр на компенсацию, добиваясь при этом положения стрелки нуль-гальванометра на 0, после чего регистрируют показания по шкале прибора в мА.

При измерении количества тепла малоинерционным тепломером с воспроизводящим элементом расчет тепло­проводности материала производят по формуле

Где б - толщина образца, м; T - температура горячей поверхности образца, °С; - температура холодной по­верхности образца, °С; Q - количество тепла, проходя­щее через образец в направлении, перпендикулярном его поверхности, Вт/м2.

Где R - постоянное сопротивление нагревателя тепломе­ра, Ом; / - сила тока, A; F - площадь тепломера, м2.

При измерении количества тепла (Q) градуированным малоинерционным тепломером расчет производят по фор­муле Q = AE (Вт/м2), где Е - электродвижущая сила (ЭДС), мВ; А - постоянная прибора, указанная в гра- дуировочном свидетельстве на тепломер.

Температуру поверхностей образца измеряют с точ­ностью до 0,1 С (при условии стационарного состояния). Тепловой поток вычисляют с точностью до 1 Вт/м2, а теп­лопроводность- до 0,001 Вт/(м-°С).

При работе на данном приборе необходимо произво­дить его периодическую проверку путем испытания стан­дартных образцов, которые предоставляют научно-ис­следовательские институты метрологии и лаборатории Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.

После проведения опыта и получения данных состав­ляют свидетельство об испытании материала, в котором должны содержаться следующие данные: наименование и адрес лаборатории, проводившей испытания; дата про­ведения испытания; наименование и характеристика ма­териала; средняя плотность материала в сухом состоя­нии; средняя температура образца во время испытания; теплопроводность материала при этой температуре.

Метод двух пластин позволяет получать более достоверные результаты, чем рассмотренные выше, так как испытанию подвергают сразу два образца-близнеца и, кроме того, тепловой поток, проходящий через образ­цы, имеет два направления: через один образец он идет снизу вверх, а через другой - сверху вниз. Это обстоя­тельство в значительной степени способствует усредне­нию результатов испытания и приближает условия опы­та к реальным условиям службы материала.

Принципиальная схема двухпластинчатого прибора для определения теплопроводности материалов методом стационарного режима показана на рис. 23.

Прибор состоит из центрального нагревателя 1, охран­ного нагревателя 2, охладительных дисков 6, которые од-

Новременно прижимают образцы материала 4 к нагре­вателям, изоляционной засыпки 3, термопар 5 и кожуха 7.

В комплект прибора входит следующая регулиру­ющая и измерительная аппаратура. Стабилизатор на­пряжения (СН), автотрансформаторы (Т), ваттметр (W ), Амперметры (А), регулятор температуры охранного на­гревателя (Р), переключатель термопар (Я), гальвано­метр или потенциометр для измерения температуры (Г) И сосуд со льдом (С).

Для обеспечения одинаковых граничных условий у пе­риметра испытуемых образцов форма нагревателя при­нята дисковой. Диаметр основного (рабочего) нагревате­ля для удобства расчета принят равным 112,5 мм, что соответствует площади в 0,01 м2.

Испытание материала на теплопроводность произво­дят следующим образом.

Из отобранного для испытания материала изготовля­ют два образца-близнеца в виде дисков диаметром, рав­ным диаметру охранного кольца (250 мм). Толщина об­разцов должны быть одинаковой и находиться в пределах от 10 до 50 мм. Поверхности образцов должны быть плоскими и параллельными, без царапин и вмятин.

Испытание волокнистых и сыпучих материалов про­изводят в специальных обоймах из асбестового картона.

Перед испытанием образцы высушивают до постоян­ной массы и измеряют их толщину с точностью до 0,1 мм.

Образцы укладывают с двух сторон электронагрева­теля и прижимают их к нему охладительными дисками. Затем устанавливают регулятор напряжения (латр) в по­ложение, при котором обеспечивается заданная темпера­тура электронагревателя. Включают циркуляцию воды в охладительных дисках и после достижения установив­шегося режима, наблюдаемого по гальванометру, изме­ряют температуру у горячих и холодных поверхностей образцов, для чего пользуются соответствующими термо­парами и гальванометром или потенциометром. Одновре­менно измеряют расход электроэнергии. После этого вы­ключают электронагреватель, а через 2-3 ч прекращают подачу воды в охладительные диски.

Теплопроводность материала, Вт/(м-°С),

Где W - расход электроэнергии, Вт; б - толщина образ­ца, м; F - площадь одной поверхности электронагрева­теля, м2;. t - температура у горячей поверхности образ­ца, °С; І2 - температура у холодной поверхности образ­ца, °С.

Окончательные результаты по определению теплопро­водности относят к средней температуре образцов
где t - температура у горячей поверхности образца (средняя двух образцов), °С; t 2 - температура у холод­ной поверхности образцов (средняя двух образцов), °С.

Метод трубы. Для определения теплопроводности теплоизоляционных изделий с криволинейной поверх­ностью (скорлуп, цилиндров, сегментов) применяют ус­тановку, принципиальная схема которой показана на

Рис. 24. Эта установка представляет собой стальную тру­бу диаметром 100-150 мм и длиной не менее 2,5 м. Внут­ри трубы на огнеупорном материале смонтирован нагре­вательный элемент, который разделен на три самостоя­тельные секции по длине трубы: центральную (рабочую), занимающую примерно ]/з длины трубы, и боковые, слу­жащие для устранения утечки тепла через торцы прибора (трубы).

Трубу устанавливают на подвесках или на подставках на расстоянии 1,5-2 м от пола, стен и потолка помеще­ния.

Температуру трубы и поверхности испытуемого ма­териала измеряют термопарами. При проведении испыта­ния необходимо регулировать мощность электроэнергии, потребляемую охранными секциями, для исключения пе­репада температуры между рабочей и охранными секция­
ми. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхностях тру­бы и изоляционного материала постоянна в течение 30 мин.

Расход электроэнергии рабочим нагревателем можно измерять как ваттметром, так и отдельно вольтметром и амперметром.

Теплопроводность материала, Вт/(м ■ °С),

X -_____ D

Где D - наружный диаметр испытуемого изделия, м; d - Внутренний диаметр испытуемого материала, м; - тем­пература на поверхности трубы, °С; t 2 - температура на внешней поверхности испытуемого изделия, °С; I - длина рабочей секции нагревателя, м.

Кроме теплопроводности на данном приборе можно замерять величину теплового потока в теплоизоляцион­ной конструкции, изготовленной из того или иного тепло­изоляционного материала. Тепловой поток (Вт/м2)

Определение теплопроводности, основанное на мето­дах нестационарного потока тепла (методы динамиче­ских измерений). Методы, основанные на измерении не­стационарных потоков тепла (методы динамических из­мерений), в последнее время все шире применяются ДЛЯ определения теплофизических величин. Преимуществом этих методов является не только сравнительная быстрота проведения опытов, но и больший объем информации, по­лучаемой за один опыт. Здесь к другим параметрам кон­тролируемого процесса добавляется еще один - время. Благодаря этому только динамические методы позволя­ют получать по результатам одного опыта теплофизиче - ские характеристики материалов такие, как теплопровод­ность, теплоемкость, температуропроводность, темп ох­лаждения (нагревания)

В настоящее время существует большое количество методов и приборов для измерения динамических темпе­ратур и тепловых потоков. Однако все они требуют зна­
Ния конкретных условий и введения поправок к получен­ным результатам, так как процессы измерения тепловых величин отличаются от измерения величин другой при­роды (механических, оптических, электрических, акусти­ческих и др.) своей значи­тельной инерционностью.

Поэтому методы, ос­нованные на измерении стационарных потоков тепла, отличаются от рас­сматриваемых методов значительно большей идентичностью между ре­зультатами измерений и истинными значениями измеряемых тепловых ве­личин.

Совершенств о в а н и е динамических методов измерений идет по трем направлениям. Во-пер­вых, это развитие мето­дов анализа погрешно­стей и введения поправок в результаты измерений. Во-вторых, разработка автоматических коррек­тирующих устройств для компенсации динамиче­ских погрешностей.

Рассмотрим два наи­более распространенных в СССР метода, основан­ных на измерении неста­ционарного потока тепла.

1. Метод регу­лярного теплового режима с бикало - риметром. При при­менении этого метода мо­гут быть использованы различные типы конструкции бикалориметров. рассмот­рим один из них - малогабаритный плоский бикалори - метр типа МПБ-64-1 (рис. 25), который предназначен
для определения теплопроводности полужестких, волок­нистых и сыпучих теплоизоляционных материалов при комнатной температуре.

Прибор МПБ-64-1 представляет собой цилиндрической формы разъемную оболочку (корпус) с внутренним диа­метром 105 мм, в центре которой встроен сердечник с вмонтированным в него нагревателем и батареей диффе­ренциальных термопар. Прибор изготовлен из дюралюми­ния марки Д16Т.

Термобатарея дифференциальных термопар бикало - риметра оснащена медно-копелевыми термопарами, диа­метр электродов которых равен 0,2 мм. Концы витков тер­мобатарей выведены на латунные лепестки кольца из стеклоткани, пропитанной клеем БФ-2, и далее через про­вода к вилке. Нагревательный элемент, выполненный из Нихромовой проволоки диаметром 0,1 мм, нашит на про­питанную клеем БФ-2 круглую пластинку из стекло ткани. Концы проволоки нагревательного элемента, так же как и концы проволоки термобатареи, выведены на латунные лепестки кольца и далее, через вилку, к источнику пита­ния. Нагревательный элемент может питаться от сети пе­ременного тока напряжением 127 В.

Прибор герметичен благодаря уплотнению из вакуум­ной резины, заложенной между корпусом и крышками, а также сальниковой набивке (пеньково-суриковой) между ручкой, бобышкой и корпусом.

Термопары, нагреватель и их выводы должны быть хорошо изолированы от корпуса.

Размеры испытуемых образцов не должны превышать в диаметре 104 мм и по толщине-16 мм. На приборе одновременно производят испытание двух образцов-близ­нецов.

Работа прибора основана на следующем принципе.

Процесс охлаждения твердого тела, нагретого до тем­пературы T ° и помещенного в среду с температурой ©<Ґ при весьма большой теплопередаче (а) от тела к Среде («->-00) и при постоянной температуре этой среды (0 = const), делится на три стадии.

1. Распределение температуры в теле носит сначала случайный характер, т. е. имеет место неупорядоченный тепловой режим.

2. С течением времени охлаждение становится упоря­доченным, т. е. наступает регулярный режим, при кото­
ром изменение температуры в каждой точке тела подчи­няется экспоненциальному закону:

Q - AUe.-"1

Где © - повышенная температура в какой-нибудь точке тела; U - некоторая функция координат точки; е-осно­вание натуральных логарифмов; т - время от начала охлаждения тела; т - темп охлаждения; А - постоянная прибора, зависящая от начальных условий.

3. После регулярного режима охлаждение характери­зуется наступлением теплового равновесия тела с окру­жающей средой.

Темп охлаждения т после дифференцирования выра­жения

По т в координатах In В -Т выражается следующим об­разом:

Где А и В - константы прибора; С - полная теплоем­кость испытуемого материала, равная произведению удельной теплоемкости материала на его массу, Дж/(кг-°С);т - темп охлаждения, 1/ч.

Испытание проводят следующим образом. После по­мещения образцов в прибор крышки прибора плотно при­жимают к корпусу с помощью гайки с накаткой. Прибор опускают в термостат с мешалкой, например в термо­стат ТС-16, заполненный водой комнатной температуры, затем подсоединяют термобатарею дифференциальных термопар к гальванометру. Прибор выдерживают в тер­мостате до выравнивания температур наружной и внут­ренней поверхностей образцов испытуемого материала, что фиксируется показанием гальванометра. После это­го включают нагреватель сердечника. Сердечник нагре­вают до температуры, превышающей на 30-40° темпера­туру воды в термостате, а затем выключают нагреватель. Когда стрелка гальванометра возвратится в пределы шкалы, производят запись убывающих во времени пока­заний гальванометра. Всего записывают 8-10 точек.

В системе координат 1п0-т строят график, который должен иметь вид прямой линии, пересекающей в некото­рых точках оси абсцисс и ординат. Затем рассчитывают тангенс угла наклона полученной прямой, который выра­жает величину темпа охлаждения материала:

__ In 6t - In O2 __ 6 02

ТІЬ - - j

T2 - Tj 12 - "El

Где Bi и 02 - соответствующие ординаты для времени Ті и Т2.

Опыт повторяют вновь и еще раз определяют темп охлаждения. Если расхождение в значениях темпа охлаж­дения, вычисленного при первом и втором опытах, менее 5%, то ограничиваются этими двумя опытами. Среднее значение темпа охлаждения определяют по результатам двух опытов и вычисляют величину теплопроводности ма­териала, Вт/(м*°С)

Х = (А + ЯСуР)/и.

Пример. Испытуемый материал - минераловатный мат на фенольном связующем со средней плотностью в сухом состоянии 80 кг/м3.

1. Вычисляем величину навески материала, помеща­емую в прибор,

Где Рп- навеска материала, помещаемая в одну цилин­дрическую емкость прибора, кг; Vn - объем одной ци­линдрической емкости прибора, равный 140 см3; рср - средняя плотность материала, г/см3.

2. Определяем произведение BCYP , где В - константа прибора, равная 0,324; С - удельная теплоемкость ма­териала, равная 0,8237 кДж/(кг-К). Тогда ВСУР= =0,324 0,8237 0,0224 = 0,00598.

3. Результаты наблюдений за охлаждением образцов в приборе во времени заносим в табл. 2.

Расхождения в значениях темпа охлаждения т и т2 менее 5%, поэтому повторные опыты можно не произво­дить.

4. Вычисляем средний темп охлаждения

Т=(2,41 + 2,104)/2=2,072.

Зная все необходимые величины, подсчитываем тепло­проводность

(0,0169+0,00598) 2,072=0,047 Вт/(м-К)

Или Вт/(м-°С).

При этом средняя температура образцов составляла 303 К или 30° С. В формуле 0,0169 -Л (константа при­бора) .

2. Зондовый метод. Существует несколько раз­новидностей зондового метода определения теплопровод­
ности теплоизоляционных материалов, отличающихся друг от друга применяющимися приборами и принципами нагрева зонда. Рассмотрим один из этих методов - метод цилиндрического зонда без электронагревателя.

Этот метод заключается в следующем. Металлический стержень диаметром 5-6 мм (рис. 26) и длиной около 100 мм вводят в толщу горячего теплоизоляционного ма­териала и с помощью вмонтированной внутри стержня

Термопары определяют температуру. Определение темпе­ратуры производят в два приема: в начале опыта (в мо­мент нагревания зонда) и в конце, когда наступает рав­новесное состояние и повышение температуры зонда пре­кращается. Время между этими двумя отсчетами заме­ряют с помощью секундомера. ч Теплопроводность материала, Вт/ (м °С), , R 2CV

Где R - радиус стержня, м; С - удельная теплоемкость материала, из которого изготовлен стержень, кДж/(кгХ ХК); V-объем стержня, м3; т - промежуток времени между отсчетами температуры, ч; tx и U - значения тем­ператур в момент первого и второго отсчетов, К или °С.

Этот способ очень прост и позволяет быстро опреде­лить теплопроводность материала как в лабораторных, так и в производственных условиях. Однако он пригоден лишь для грубой оценки этого показателя.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ

КОМПОЗИТЫ

Издание официальное

Стшдфттфцм

ГОСТ Р 57967-2017

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт авиационных материалов» совместно с Автономной некоммерческой организацией «Центр нормирования, стандартизации и классификации композитов» при участии Объединения юридических лиц «Союз производителей композитов» на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 стандарта, который выполнен ТК 497

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21 ноября 2017 г. № 1785-ст

4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Е1225-13 «Стандартный метод испытания на определение теплопроводности твердых веществ методом сравнительного продольно-огражденного теплового потока» (ASTM E122S-13 «Standard Test Method for Thermal Conductivity of Solids Using the Guard ed-Comparative-Longitudinal Heat Flow Technique», MOD) путем изменения его структуры для приведения в соответствие с правилами, установленными в ГОСТ 1.5-2001 (подразделы 4.2 и 4.3).

В настоящий стандарт не включены пункты 5. 12. подпункты 1.2, 1.3 примененного стандарта АСТМ. которые нецелесообразно применять в российской национальной стандартизации в связи с их избыточностью.

Указанные пункты и подпункты, не включенные в основную часть настоящего стандарта, приведены в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (подраздел 3.5).

Сопоставление структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

Сведения о соответствии ссылочного национального стандарта стандарту АСТМ. использованному в качестве ссылочного в примененном стандарте АСТМ. приведены в дополнительном приложении ДВ

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N9 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется е ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и пол давок - е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация. уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

© Стамдартинформ. 2017

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 57967-2017

1 Область применения.................................................................1

3 Термины, определения и обозначения...................................................1

4 Сущность метода....................................................................2

5 Оборудование и материалы...........................................................4

6 Подготовка к проведению испытаний....................................................11

7 Проведение испытаний..............................................................12

8 Обработка результатов испытаний.....................................................13

9 Протокол испытаний.................................................................13

Приложение ДА (справочное) Оригинальный текст невключенных структурных элементов

примененного стандарта АСТМ...........................................15

Приложение ДБ (справочное) Сопоставление структуры настоящего стандарта со структурой

примененного в нем стандарта АСТМ......................................18

Приложение ДВ (справочное) Сведения о соответствии ссылочного национального стандарта стандарту АСТМ. использованному в качестве ссылочного в примененном стандарте АСТМ.......................................................19


ГОСТ Р 57967-2017

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПОЗИТЫ

Определение теплопроводности твердых тел методом стационарного одномерного теплового потока с охранным нагревателем

Composites. Determination of thermal conductivity of soHds by stationary one-dimensional heat flow

with a guard heater technique

Дата введения - 2018-06-01

1 Область применения

1.1 Настоящий стандарт устанавливает определение теплопроводности однородных непрозрачных твердых полимерных, керамических и металлических композитов методом стационарного одномерного теплового потока с охранным нагревателем.

1.2 Настоящий стандарт предназначен для применения при испытании материалов, имеющих аффективную теплопроводность в диапазоне от 0,2 до 200 Вт/(м-К) в диапазоне температур от 90 К до 1300 К.

1.3 Настоящий стандарт может быть также применен при испытании материалов, имеющих эффективную теплопроводность вне указанных диапазонов с более низкой точностью.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 2769 Шероховатость поверхности. Параметры и характеристики

ГОСТ Р 8.585 Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная осыпка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 теплопроводность /.. Вт/(м К): Отношение плотности теплового потока при стационарных условиях через единицу площади к единице градиента температуры е направлении, перпендикулярном к поверхности.

Издание официальное

ГОСТ Р 57967-2017

3.1.2 кажущаяся теплопроводность: При наличии других способов передачи тепла через мате* риал, кроме теплопроводности, результаты измерений, выполненных по настоящему методу испыта* ния. представляют собой кажущуюся или эффективную теплопроводность.

3.2 8 настоящем стандарте применены следующие обозначения:

3.2.1 X M (T), Вт/(м К) - теплопроводность эталонных образцов в зависимости от температуры.

3.2.2 Эци, Вт/(м К) - теплопроводность верхнего эталонного образца.

3.2.3 Xjj’. 8т/(м К) - теплопроводность нижнего эталонного образца.

3.2.4 эдТ), Вт/(м К) - теплопроводность испытуемого образца с поправкой на теплообмен в не* обходимых случаях.

3.2.5 Х"$(Т), Вт/{м К) - теплопроводность испытуемого образца, рассчитанная без учета поправки на теплообмен.

3.2.6 >у(7), Вт/(м К) - теплопроводность изоляции в зависимости от температуры.

3.2.7 Г, К - абсолютная температура.

3.2.8 Z, м - расстояние, измеренное от верхнего конца пакета.

3.2.9 /, м - длина испытуемого образца.

3.2.10 Г (, К - температура при Z r

3.2.11 q", Вт/м 2 - тепловой поток на единицу площади.

3.2.12 ЗХ ЬТ, др. - отклонения X. Г. др.

3.2.13 г А, м - радиус испытуемого образца.

3.2.14 г в, м - внутренний радиус охранной оболочки.

3.2.15 f 9 (Z), К - температура охранной оболочки в зависимости от расстояния Z.

4 Сущность метода

4.1 Общая схема метода стационарного одномерного теплового потока с использованием ох* ранного нагревателя показана на рисунке 1. Испытуемый образец с неизвестной теплопроводностью X s . имеющий предполагаемую удельную теплопроводность X s // s . устанавливают под нагрузкой между двумя эталонными образцами с теплопроводностью Х м, имеющими такую же площадь поперечного сечения и удельную теплопроводность Х^//^. Конструкция представляет собой пакет, состоящий из дискового нагревателя с испытуемым образцом и эталонными образцами с каждой стороны между нагревателем и теплоотводом. В исследуемом пакете создается градиент температуры, потери тепла сводятся к минимуму за счет использования продольного охранного нагревателя, имеющего приблизи* тельно тот же температурный градиент. Через каждый образец протекает примерно половина энергии. 8 равновесном состоянии коэффициент теплопроводности определяют исходя из измеренных гради* ентов температуры испытуемого образца и соответствующих эталонных образцов и теплопроводности эталонных материалов.

4.2 Прикладывают силу к пакету для обеспечения хорошего контакта между образцами. Пакет окружается изолирующим материалом с теплопроводностью Изоляция заключена в охранную обо* лочку с радиусом г 8 , находящуюся при температуре Т д (2). Устанавливают градиент температуры в пакете путем поддержания верхней части при температуре Т т и нижней части при температуре Т в. Температура T 9 (Z) обычно является линейным температурным градиентом, приблизительно соответствующим градиенту, установленному в исследуемом пакете. Может быть также использован изотермический охранный нагреватель с температурой T ? (Z). равной средней температуре испытуемого образца. Не рекомендуется использовать конструкцию измерительной ячейки прибора без охранных нагревателей из-за возможных больших тепловых потерь, особенно при повышенных температурах. В стационарном состоянии температурные градиенты вдоль участков вычисляют на основе измеренных температур вдоль двух эталонных образцов и испытуемого образца. Значение X" s без учета поправки на теплообмен вычисляют по формуле (условные обозначения приведены на рисунке 2).

Т 4 -Г 3 2 U 2 -Z, Z e -Z 5

где Г, - температура при Z,. К Т 2 - температура при Z 2 , К Г 3 - температура при Z 3 . К

ГОСТ Р 57967-2017

Г 4 - температура при Z 4 . К;

Г 5 - температура при Z s . К:

Г в - температура при Z e . К:

Z, - координата 1-го датчика температуры, м;

Zj - координата 2-го датчика температуры, м;

Z 3 - координата 3-го датчика температуры, м;

Z 4 - координата 4-го датчика температуры, м;

Z 5 - координата 5-го датчика температуры, м;

Z e - координата 6>го датчика температуры, м.

Такая схема является идеализированной, так как она не учитывает теплообмен между пакетом и изоляцией в каждой точке и равномерную передачу тепла на каждой границе раздела эталонных образцов и испытуемого образца. Погрешности, вызванные этими двумя допущениями, могут сильно изменяться. Из-за этих двух факторов должны быть предусмотрены ограничения на данный метод испытаний. если требуется достигнуть необходимой точности.

1 - градиент температуры в охранной оболочке: 2 - градиент температуры в пакете; 3 - термопара: 4 -- зажим.

S - верхним нагреватель. б - верхний эталонный образец: 7 - нижний эталонный образец, в - нижний нагревателе: в - холодильник. 10 - верхний охранный натреаатель: И - инжиии охранный нагреватель

Рисунок 1 - Схема типичного испытуемого пакета и охранной оболочки, показывающая соответствие градиентов температуры

ГОСТ Р 57967-2017

7

б

Холодил ьнж

Оаь оимшпрми

Изоляция; 2 - охранный нагреватель. Э - металлическая или керамическая охранная оболочка: 4 - нагреватель. S - эталонный образец, б - испытуемый образец, х - приблизительное расположение термопар

Рисунок 2 - Схема методе одномерного стационарного теплового потока с использованием охранного нагревателя с указанием возможных мест установки датчиков температуры

5 Оборудование и материалы

5.1 Эталонные образцы

5.1.1 Для эталонных образцов должны быть использованы эталонные материалы или стандарт* ные материалы с известными значениями теплопроводности. В таблице 1 приведены некоторые из общепризнанных эталонных материалов. Рисунок 3 показывает примерное изменение >. м с темпера* турой.

ГОСТ Р 57967-2017

Тйплофоаодоостъ, ЕГЛ^м-К)

Рисунок 3 - Справочные значения теплопроводности эталонных материалов

Примечание - Выбранньы для эталонных образцов материал должен иметь теплопроводность, наиболее близкую к теплопроводности измеряемого материала.

5.1.2 Таблица 1 не является исчерпывающей, и в качестве эталонных могут быть использованы другие материалы. Эталонный материал и источник значений Х м должны быть указаны в протоколе испытаний.

Таблица 1 - Справочные данные характеристик эталонных материалов

ГОСТ Р 57967-2017

Окончание таблицы 1

Таблица 2 - Теплопроводность электролитического железа

Температура. К

Теплопроводность. Вт/(м К)

ГОСТ Р 57967-2017

Таблица 3 - Теплопроводность вольфрама

Температура, К

Теплопроводность. 6т/(мК)

ГОСТ Р 57967-2017

Таблица 4 - Теплопроводность аустенитной стали

Температура. К

Теплопроводность, Вт/(м К)

ГОСТ Р 57967-2017

Окончание таблицы 4

5.1.3 Требования, предъявляемые к любым эталонным материалам, включают стабильность свойств во всем диапазоне температур эксплуатации, совместимость с другими компонентами измерительной ячейки прибора, легкость крепления датчика температуры и точно известную теплопроводность. Поскольку погрешности из-за потерь тепла для конкретного увеличения к, пропорциональны изменению к и Jk s , для эталонных образцов следует использовать эталонный материал с). м. наиболее близкой к >. s .

5.1.4 Если теплопроводность испытуемого образца k s находится между значениями коэффициента теплопроводности двух эталонных материалов, следует использовать эталонный материал с более высокой теплопроводностью к и. чтобы уменьшить общее падение температуры вдоль пакета.

5.2 Изоляционные материалы

В качестве изоляционных материалов используют порошковые, дисперсные и волокнистые материалы для снижения радиального теплового потока в окружающее пакет кольцевое пространство и потерь тепла вдоль пакета. Необходимо учитывать несколько факторов при выборе изоляции:

Изоляция должна быть стабильной в ожидаемом диапазоне температур, иметь низкое значение теплопроводности к, и быть простой в обращении;

Изоляция не должна загрязнять компоненты измерительной ячейки прибора, такие как датчики температуры, она должна иметь низкую токсичность и не должка проводить электрический ток.

Обычно используют порошки и твердые частицы, так как их легко утрамбовать. Можно использовать волокнистые маты с низкой плотностью.

5.3 Датчики температуры

5.3.1 На каждом эталонном образце должно быть установлено не менее двух датчиков температуры и двух на испытуемом образце. По возможности эталонные образцы и испытуемый образец должны содержать три датчика температуры в каждом. Дополнительные датчики необходимы для подтверждения линейности распределения температуры вдоль пакета или выявления ошибки вследствие некалиброванности температурного датчика.

5.3.2 Тип датчика температуры зависит от размера измерительной ячейки прибора, диапазона температур и окружающей среды в измерительной ячейке прибора, определяемыми изоляцией, эталонными образцами, испытуемым образцом и газом. Для измерения температуры может быть использован любой датчик, обладающий достаточной точностью, и измерительная ячейка прибора должна быть достаточно большой, чтобы возмущение теплового потока от датчиков температуры было незначительным. Обычно используются термопары. Их небольшие размеры и легкость крепления составляют явные преимущества.

5.3.3 Термопары должны быть изготовлены из проволоки диаметром не более 0.1 мм. Для всех холодных спаев должна обеспечиваться постоянная температура. Эта температура поддерживается охлажденной суспензией, термостатом или электронной компенсацией опорной точки. Все термопары должны быть изготовлены либо из калиброванной проволоки, либо из проволоки, которая была сертифицирована поставщиком, чтобы обеспечить пределы погрешности, указанные в ГОСТ Р 8.585.

5.3.4 Методы крепления термопар приведены на рисунке 4. внутренние контакты могут быть получены в металлах и сплавах путем приваривания отдельных термоэлементов к поверхностям (рисунок 4а). Спаи термопар, приваренные встык или с корольком могут быть жестко прикреплены с помощью ковки, цементирования или сварки в узких канавках или небольших отверстиях (рисунки 4Ь. 4с и 4

5.3.5 На рисунке 46 термопара находится в радиальном пазу, а на рисунке 4с термопара протягивается через радиальное отверстие в материале. 8 случае использования термопары в защитной оболочке или термопары, оба термоэлемента которой находятся в электрическом изоляторе с двумя

ГОСТ Р 57967-2017

отверстиями, может быть использовано крепление термопары, показанное на рисунке 4d. В последних трех случаях термопара должна быть термически соединена с твердой поверхностью подходящим клеем или высокотемпературным иементом. 8се четыре процедуры, показанные на рисунке 4. должны включать в себя закалку проводов на поверхностях, витки проволоки в изотермических зонах, тепловые заземления проводов на охранном кожухе или сочетание всех трех.

5.3.6 Поскольку неточность расположения датчика температуры приводит к большим погрешностям. особое внимание должно быть уделено определению правильного расстояния между датчиками и расчету возможной ошибки в результате какой-либо неточности.

в - внутренний сырной шое с разделенными термоэлементами, привариваемыми к испытуемому образцу или эталонным образцам таким образом, чтобы сигнал проходил через материал. 6 - радиальный паз на плоской поверхности крепления оголенного провода или датчика термопары с керамической изоляцией; с - небольшое радиальное отверстие, просверленное через испытуемый образец или эталонные образцы, и неизолированная (допускается, если материал представляет собой электрический изолятор) или изолированная термопара, протянутая через отверстие: d - небольшое радиальное отверстие, просверленное ■ испытуемом образце или эталонных образцах, и термопара, помещенная о отверстие

Рисунок 4 - Крепление термопар

Примечание - Во всех случаях, термоэлементы должны быть термически закалены или термически заземлены на охранную оболочку для минимизации погрешности измерения из-за теплового потока к или из горячего спая.

5.4 Система нагружения

5.4.1 Метод испытания требует равномерного переноса тепла через границу раздела эталонных образцов и испытуемого образца, когда датчики температуры находятся на расстоянии, лежащем в пределах г к от границы раздела. Для этого необходимо обеспечить равномерное контактное сопро-

ГОСТ Р 57967-2017

тиаление прилегающих зон эталонных образцов и испытуемого образца, которое может быть создано путем приложения осевой нагрузки в сочетании с проводящей средой на границах раздела. Не реко-мендуется проводить измерения в вакууме, если он не требуется дпя защитных целей.

5.4.2 При испытаниях материалов с низкой теплопроводностью используются тонкие испытуемые образцы, поэтому датчики температуры должны быть установлены близко к поверхности. В таких случаях на границах раздела должен быть введен очень тонкий слой высоко теплопроводящей жидкости, пасты, мягкой металлической фольги или экрана.

5.4.3 В конструкции измерительного прибора должны быть предусмотрены средства для наложения воспроизводимой и постоянной нагрузки одоль пакета с целью минимизации межфазных сопротивлений на границах раздела эталонных образцов и испытуемого образца. Нагрузка может быть приложена пневматически, гидравлически, действием пружины или расположением груза. Вышеуказанные механизмы приложения нагрузки являются постоянными при изменении температуры пакета. В некоторых случаях, прочность на сжатие испытуемого образца может быть настолько низкой, что приложенная сила должна быть ограничена весом верхнего эталонного образца. В этом случае особое внимание должно быть уделено погрешностям, которые могут быть вызваны плохим контактом, для чего датчики температуры необходимо располагать вдали от любого возмущения теплового потока на границах раздела.

5.5 Охранная оболочка

5.5.1 Пакет, состоящий из испытуемого образца и эталонных образцов, должен быть заключен в защитную оболочку с правильной круговой симметрией. Охранная оболочка может быть металлической или керамической, и ее внутренний радиус должен быть таким, чтобы отношение г^г А находилось в диапазоне от 2.0 до 3.5. Охранная оболочка должна содержать, по меньшей мере, один охранный нагреватель для регулирования температурного профиля одоль оболочки.

5.5.2 Охранная оболочка должна быть сконструирована и функционировать таким образом, чтобы температура ее поверхности была либо изотермической и приблизительно равной средней температуре испытуемого образца, либо иметь приблизительный линейный профиль, согласованный на верхнем и нижнем концах охранной оболочки с соответствующими позициями одоль пакета. В каждом случае не менее трех датчиков температуры должно быть установлено на охранной оболочке в предварительно закоординироеанных точках (см. рисунок 2) для измерения профиля температуры.

5.6 Измерительное оборудование

5.6.1 Сочетание температурного датчика и измерительного прибора, используемого для измерения выходного сигнала датчика, должно быть адекватным для обеспечения точности измерения температуры ± 0.04 К и абсолютной погрешности менее ± 0.5 %.

5.6.2 Измерительное оборудование дпя данного метода должно поддерживать требуемую температуру и измерение всех соответствующих выходных напряжений с точностью, соразмерной с точностью измерения температуры температурными датчиками.

6 Подготовка к проведению испытаний

6.1 Требования к испытуемым образцам

6.1.1 Испытуемые образцы, исследуемые по данному методу, не ограничиваются конфетной геометрией. Наиболее предпочтительно использование цилиндрических или призматических образцов. Области проводимости испытуемою образца и эталонных образцов должны быть одинаковыми с точностью до 1 % и любое отличие в площади должно быть принято во внимание при расчетах результата. Для цилиндрической конфигурации радиусы испытуемого образца и эталонных образцов должны согласовываться с точностью до ± 1 %. а радиус испытуемою образца г А должен быть таким, чтобы r B fr A составлял от 2.0 до 3.5. Каждая плоская поверхность испытуемою и эталонного образцов должна быть плоской с шероховатостью поверхности не более чем R a 32 в соответствии с ГОСТ 2789. и нормали к каждой поверхности должны быть параллельны оси образца с точностью до ± 10 мин.

Прим еча н и е - В некоторых случаях это требование не является необходимым. Например, некоторые приборы могут состоять из эталонных образцов и испытуемых образцов с высокими значениями >. м и >. s . где ошибки из-за потерь тепла незначительны для длинных секций. Такие секции могут иметь достаточную длину, позволя

ГОСТ Р 57967-2017

ющую крепить датчики температуры на достаточном расстоянии от мест контакта, тем самым обеспечивая равномерность теплового потока. Длина испытуемого образца должна быть выбрана на основе сведений о радиусе и теплопроводности. Когда). и выше, чем теплопроводность нержавеющей стали, могут использоваться длинные испытуемые образцы с длиной 0г А » 1. Такие длинные испытуемые образцы позволяют использовать большие расстояния между датчиками температуры, и это снижает ошибку, получаемую из-за неточности в расположении датчика. Когда). м ниже, чем теплопроводность нержавеющей стали, длина испытуемого образца должна быть уменьшена, так как погрешность измерения из-за потерь тепла становится слишком большой.

6.1.2 Если иное не установлено в нормативном документе или технической документации на материал. для проведения испытаний используют один испытуемый образец.

6.2 Настройка оборудования

6.2.1 Калибровка и поверка оборудования выполняется в следующих случаях:

После сборки оборудования:

Если отношение Х м к X s меньше, чем 0,3. или больше, чем 3. и подобрать значения теплопроводностей не представляется возможным;

Если форма испытуемого образца является сложной или испытуемый образец мал:

Если были внесены изменения в геометрические параметры измерительной ячейки прибора;

Если было принято решение использовать материалы эталонных образцов или изоляции, отличные от приведенных в разделах 6.3 и 6.4:

Если оборудование ранее функционировало до достаточно высокой температуры, при которой могут измениться свойства компонентов, такие как. например, чувствительность термопары.

6.2.2 Указанные проверки должны проводиться путем сравнения не менее двух эталонных материалов следующим образом:

Выбрать эталонный материал, теплопроводность которого наиболее близка к предполагаемой теплопроводности испытуемого образца:

Теплопроводность X испытуемого образца, изготовленного из эталонного материала, измеряется с помощью эталонных образцов, изготавливаемых из другого эталонного материала, который имеет значение X. самое близкое к значению испытуемого образца. Например, проверку можно провести на образце ситалла. используя эталонные образцы, изготовленные из нержавеющей стали. Если измеренная теплопроводность образца не согласуется с значением из таблицы 1 после применения поправки на теплообмен, необходимо определить источники погрешностей.

7 Проведение испытаний

7.1 Выбирают эталонные образцы, чтобы их термическая проводимость была того же порядка величин, который ожидается для испытуемого образца. После оснащения необходимых эталонных образцов температурными датчиками и их установки в измерительную ячейку, испытуемый образец оснащают аналогичными средствами. Испытуемый образец вставляют в пакет таким образом, чтобы он помещался между эталонными образцами и контактировал с соседними эталонными образцами как минимум 99 % площади каждой поверхности. Для снижения поверхностного сопротивления может использоваться мягкая фольга или другая контактная среда. Если измерительная ячейка должна быть защищена от окисления во время испытания, или если измерение требует определенного газа или давления газа для контроля X /t то измерительная ячейка наполняется и продувается рабочим газом с установленным давлением. Для нагрузки пакета следует применять силу, необходимую для уменьшения эффектов неравномерного термического сопротивления на границе раздела фаз.

7.2 Включают верхний и нижний нагреватели на обоих концах пакета и регулируют до тех пор. пока разности температур между точками 2, и Zj. Z3 и Z 4 . а также Z s и 2^ не будут больше 200-кратной погрешности датчика температуры, но не более 30 К. и испытуемый образец не будет находиться при средней температуре, требуемой для измерения. Несмотря на то. что точный профиль температуры вдоль охранной оболочки не требуется для 3. мощность охранных нагревателей регулируют до тех лор, пока профиль температуры вдоль оболочки T g }