Санитарные нормы и правила (СНиП) эксплуатации котельных. Мероприятия по снижению уровня шума Замеры шума от работы оборудования крышной котельной

УРОВЕНЬ ШУМА

Сила звука измеряется в децибелах (дБ) в диапазоне частот от 31,5 до 16000 Гц и в середине каждой частотной полосы, т.е. на частотах 31,5; 63; 125; 250 Гц и т.д. Человек воспринимает звук в диапазоне от 63 до 800 Гц.

Сила звука в дБ разделяется на уровни А, В, С и D . Допустимой нормой общего уровня шума считается уровень А, наиболее близкий к диапазону чувствительности человека. Для обозначения этой характеристики наиболее употребим термин «Уровень звукового давления».

ИСТОЧНИК ШУМА

Работающий двигатель – источник механического шума, зарождающегося в
газораспределительном механизме, топливном насосе и т.д., а также появляющегося в камерах сгорания, в результате вибрации, всасывания воздуха и работы вентилятора, если он установлен. Обычно шум всасываемого воздуха и радиатора меньше, чем механические шумы. Данные по уровню шума при необходимости можно найти в Справочнике продукции [ Product Information Manual ]. Уменьшить шум можно с помощью звукопоглощающего покрытия. Если механический шум ослаблен до 5 уровня, упомянутого в разделе Уровень шума, нужно обратить внимание на шум воздуха и вентилятора.

Эффективный и относительно дешевый способ - закрыть двигатель кожухом. На расстоянии 1 м от кожуха ослабление звука достигает 10 дБ(А). Эффективны только специально спроектированные кожухи, так что желательно проконсультироваться со специалистами относительно его параметров.

Если к шуму вне помещений, в которых расположены установки, предъявляются определенные требования, нужно соблюдать следующие условия:

1) Конструкция здания

Внешние стены - из двойного кирпича с

пустотами.

Окна - двойного остекления с расстоянием

между стеклами 200 мм.

Двери - двойные двери с тамбуром или

одинарные, со стеной-экраном напротив

дверного проема.

2) Вентиляция

Проемы для забора свежего воздуха и отвода нагретого воздуха должны быть оборудованы шумозащитными экранами. Эти проблемы Владелец должен обсудить с Изготовителем.

Экраны не должны уменьшать сечение воздуховодов, так как это повысит сопротивление на вентиляторе. Для более крупных двигателей, требующих больше воздуха, нужны соответственно увеличенные экраны, а здание должно допускать их правильную установку.

3) Виброизолирующие опоры

Монтаж агрегатов на виброизолирующих опорах предотвращает передачу вибрации на стены, другие узлы установки и т.д. Часто вибрация является одной из причин шума. (См. виброизолирующие опоры).

4) Глушение выхлопа

Оно позволяет ослабить шум на 30...35 дБ(А) на расстоянии 1 м от внешней стены помещения, при условии применения высококачественных поглотителей звука и выхлопных глушителей на входе и выходе.

Дата: 12.12.2015

Котельные издают много шума. В них имеется множество элементов, которые издают звуки: это насосы, вентиляторы, помпы и другие механизмы. В принципе, работа в промышленности, с промышленным оборудованием, так или иначе вынуждает специалиста сталкиваться с шумом, и возможности сделать агрегаты полностью беззвучными пока нет. Но можно сделать их в значительной степени менее громкими.

Как снизить шумность котельной при проектировании

К уровню шума объектов электро- и теплоэнергетики предъявляют очень строгие требования, особенно если обозначенные объекты находятся в пределах города. Котельная - это как раз объект теплоэнергетики, и даже будучи компактным, он может причинять окружающим значительный дискомфорт.

Вас также может заинтересовать

​Преимущества и недостатки мини-котельной в многоквартирном доме

Энергетические ресурсы становятся дороже - это факт, поэтому особенно остро в последнее время встает вопрос экономии энергоносителей. В том числе это касается отопительных систем многоквартирных домов. Стоимость напрямую зависит от способа подачи теплоэнергии жильцам, которых в настоящий момент два: централизованный и автономный.

В.Б. Тупов
Московский энергетический институт (технический университет)

АННОТАЦИЯ

Рассмотрены оригинальные разработки МЭИ по снижению шума от энергетического оборудования ТЭС и котельных. Приводятся примеры снижения шума от наиболее интенсивных источников шума, а именно от паровых выбросов, парогазовых установок, тягодутьевых машин, водогрейных котлов, трансформаторов и градирен с учетом требований и специфики их эксплуатации на объектах энергетики. Даны результаты испытаний глушителей. Приведенные данные позволяют рекомендовать глушители МЭИ для широкого использования на объектах энергетики страны.

1. ВВЕДЕНИЕ

Решения экологических вопросов при эксплуатации энергетического оборудования являются приоритетными. Шум является одним из важных факторов, загрязняющих окружающую среду, снижение негативного воздействия которого на окружающую среду обязывают законы «Об охране атмосферного воздуха» и «Об охране окружающей природной среды», а санитарные нормы СН 2.2.4/2.1.8.562-96 устанавливают допустимые уровни шума на рабочих местах и территории жилой застройки.

Работа энергетического оборудования в штатном режиме связана с шумоизлучением, которое превышает санитарные нормы не только на территории энергетических объектов, но и на территории окружающего района. Особенно это важно для энергетических объектов, находящихся в крупных городах рядом с жилыми районами. Использование парогазовых установок (ПГУ) и газотурбинных установок (ГТУ), а также оборудования более высоких технических параметров связано с увеличением уровней звукового давления в окружающем районе.

Некоторое энергетическое оборудование имеет тональные составляющие в своем спектре излучения. Круглосуточный цикл работы энергетического оборудования обуславливает особую опасность шумового воздействия для населения в ночное время.

В соответствии с санитарными нормами санитарно-защитные зоны (СЗЗ) ТЭС эквивалентной электрической мощностью 600 МВт и выше, использующие в качестве топлива уголь и мазут, должны иметь СЗЗ не менее 1000 м, работающие на газовом и газомазутном топливе - не менее 500 м. Для ТЭЦ и районных котельных тепловой мощностью 200 Гкал и выше, работающих на угольном и мазутном топливе СЗЗ составляет не менее 500 м, а для работающих на газовом и резервном мазутном топливе - не менее 300 м.

Санитарные нормы и правила устанавливают минимальные размеры санитарной зоны, а действительные размеры могут быть больше. Превышение допустимых норм от постоянно работающего оборудования тепловых электрических станций (ТЭС) может достигать для рабочих зон - 25-32 дБ; для территорий жилых зон - 20-25 дБ на расстоянии 500 м от мощной тепловой электрической станции (ТЭС) и 15-20 дБ на расстоянии 100 м от крупной районной тепловой станции (РТС) или квартальной тепловой станции (КТС). Поэтому проблема снижения шумового воздействия от энергетических объектов является актуальной, и в ближайшее время её значение будет возрастать.

2. ОПЫТ СНИЖЕНИЯ ШУМА ОТ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

2.1. Основные направления работы

Превышение санитарных норм в окружающем районе формируется, как правило, группой источников, разработкой мер по снижению шума, которым уделяется большое внимание как за рубежом, так и в нашей стране. За рубежом известны работы по шумоглушению энергетического оборудования таких компаний, как Industrial acoustic company (IAC), BB-Acustic, Gerb и других, а в нашей стране- разработки ЮжВТИ, НПО ЦКТИ, ОРГРЭС, ВЗПИ (Открытый университет), НИИСФ, ВНИАМ др. .

Московский энергетический институт (технический университет) с 1982 г. также проводит комплекс работ для решения этой проблемы . Здесь за последние годы разработаны и внедрены на объектах большой и малой энергетики новые эффективные глушители для наиболее интенсивных источников шума от:

паровых выбросов;

парогазовых установок;

тягодутьевых машин (дымососов и дутьевых вентиляторов);

водогрейных котлов;

трансформаторов;

градирен и других источников.

Ниже рассмотрены примеры снижения шума от энергетического оборудования разработками МЭИ. Работа по их внедрению имеет высокую социальную значимость, которая заключается в уменьшении шумового воздействия до санитарных норм для большого числа населения и персонала энергетических объектов.

2.2. Примеры снижения шума от энергетического оборудования

Сбросы пара энергетических котлов в атмосферу является наиболее интенсивным, хотя и кратковременным, источником шума как для территории предприятия, так и для окружающего района.

Акустические измерения показывают, что на расстоянии 1 - 15 м от парового выброса энергетического котла уровни звука превышают не только допустимый, но и максимально допустимый уровень звука (110 дБА) на 6 - 28 дБА.

Поэтому разработка новых эффективных паровых глушителей является актуальной задачей. Был разработан глушитель шума выброса пара (глушитель МЭИ) .

Паровой глушитель имеет различные модификации в зависимости от требуемого снижения уровня шума выброса и характеристик пара.

В настоящее время паровые глушители МЭИ внедрены на ряде энергетических объектов: Саранской теплоэлектроцентрали №2 (ТЭЦ-2) ОАО «Территориальная генерирующая компания-6», котле ОКГ-180 ОАО «Новолипецкий металлургический комбинат», ТЭЦ-9, ТЭЦ-11 ОАО «Мосэнерго». Расходы пара через глушители составляли от 154 т/ч на Саранской ТЭЦ-2 до 16 т/ч на ТЭЦ-7 ОАО «Мосэнерго».

Глушители МЭИ были установлены на выхлопных трубопроводах после ГПК котлов ст. №1, 2 ТЭЦ-7 филиала ТЭЦ-12 ОАО «Мосэнерго». Эффективность этого глушителя шума, полученная по результатам измерений, составила 1,3 - 32,8 дБ во всём спектре нормируемых октавных полос со среднегеометрическими частотами от 31,5 до 8000 Гц.

На котлах ст. № 4, 5 ТЭЦ-9 ОАО «Мосэнерго» было внедрено несколько глушителей МЭИ на сбросе пара после главных предохранительных клапанов (ГПК). Проведенные здесь испытания показали, что акустическая эффективность составила 16,6 - 40,6 дБ во всём спектре нормируемых октавных полос со среднегеометрическими частотами 31,5 - 8000 Гц, а по уровню звука - 38,3 дБА.

Глушители МЭИ по сравнению с зарубежными и другими отечественными аналогами имеют высокие удельные характеристики, позволяющие достигать максимального акустического эффекта при минимальном весе глушителе и максимальном расходе пара через глушитель .

Паровые глушители МЭИ могут быть использованы для снижения шума сбросов в атмосферу перегретого и влажного пара, природного газа и др. Конструкция глушителя может эксплуатироваться в широком диапазоне параметров сбрасываемого пара и применяться как на блоках с докритическими параметрами, так и на блоках со сверхкритическими параметрами. Опыт применения паровых глушителей МЭИ показал необходимую акустическую эффективность и надёжность работы глушителей на различных объектах.

При разработке мер по шумоглушению ГТУ основное внимание было уделено разработке глушителей для газовых трактов .

По рекомендациям МЭИ выполнены конструкции глушителей шума газовых трактов котлов-утилизаторов следующих марок: КУВ-69,8-150 производства ОАО «Дорогобужкотломаш» для ГТЭС «Поселок Северный», П-132 производства АО «Подольский машиностроительный завод» (АО «ПМЗ») для Киришской ГРЭС, П-111 производства АО «ПМЗ» для ТЭЦ-9 ОАО «Мосэнерго», котла-утилизатора по лицензии компании «Nooter/Eriksen» для энергоблока ПГУ-220 Уфимской ТЭЦ-5, КГТ-45/4,0-430-13/0,53-240 для Новоуренгойского газохимического комплекса (ГХК).

Для ГТУ-ТЭЦ «Посёлок Северный» проведен комплекс работ по снижению шума газовых трактов.

ГТУ-ТЭЦ «Посёлок Северный» содержит двухкорпусной КУ конструкции ОАО «Дорогобужкотломаш», который устанавливается после двух газовых турбин FT-8.3 компании «Pratt & Whitney Power Systems». Эвакуация дымовых газов от КУ осуществляется через одну дымовую трубу.

Проведенные акустические расчёты показали, что для выполнения санитарных норм в жилом районе на расстоянии 300 м от среза устья дымовой трубы необходимо снизить шум в пределах от 7,8 дБ до 27,3 дБ на среднегеометрических частотах 63-8000 Гц.

Разработанный МЭИ диссипативный пластинчатый глушитель шума для снижения шума выхлопа ГТУ с КУ располагается в двух в металлических коробах шумоглушения КУ с размерами 6000x6054x5638 мм над конвективными пакетами перед конфузорами.

На Киришской ГРЭС в настоящее время внедряется парогазовый блок ПГУ-800 с КУ П-132 горизонтальной компоновки и ГТУ SGT5-400F (Siemens).

Проведенные расчёты показали, что требуемое снижение уровня шума от выхлопного тракта ГТУ составляет 12,6 дБА для обеспечения уровня звука 95 дБА в 1 м от устья дымовой трубы.

Для снижения шума в газовых трактах КУ П-132 Киришской ГРЭС разработан цилиндрический глушитель, который размещается в дымовой трубе внутренним диаметром 8000 мм.

Глушитель шума состоит из четырёх цилиндрических элементов, размещенных равномерно в дымовой трубе, при этом относительное проходное сечение глушителя составляет 60 %.

Расчётная эффективность глушителя составляет 4,0-25,5 дБ в диапазоне октавных полос со среднегеометрическими частотами 31,5 - 4000 Гц, что соответствует акустической эффективности по уровню звука 20 дБА.

Использование глушителей для снижения шума от дымососов на примере ТЭЦ-26 ОАО «Мосэнерго» на горизонтальных участках дано в .

В 2009 г. для снижения шума газового тракта за центробежными дымососами Д-21,5x2 котла ТГМ-84 ст. № 4 ТЭЦ-9 был установлен пластинчатый глушитель шума на прямом вертикальном участке газохода котла за дымососами перед входом в дымовую трубу на отметке 23,63 м.

Пластинчатый глушитель шума для газохода котла ТГМ ТЭЦ-9 представляет собой двухступенчатую конструкцию.

Каждая ступень глушителя состоит из пяти пластин толщиной 200 мм и длиной 2500 мм, размещенных равномерно в газоходе размерами 3750x2150 мм. Расстояние между пластинами составляет 550 мм, расстояние между крайними пластинами и стенкой газохода - 275 мм. При таком размещении пластин относительное проходное сечение составляет 73,3 %. Длина одной ступени глушителя без обтекателей составляет 2500 мм, расстояние между ступенями глушителя составляет 2000 мм, внутри пластин находится негорючий, негигроскопичный звукопоглощающий материал, который защищается от выдувания стеклотканью и перфорированным металлическим листом. Глушитель имеет аэродинамическое сопротивление около 130 Па. Вес конструкции глушителя составляет около 2,7 т. Акустическая эффективность глушителя по результатам испытаний составляет 22-24 дБ на среднегеометрических частотах 1000-8000 Гц.

Примером комплексной проработки мер по шумоглушению является разработка МЭИ для снижения шума от дымососов на ГЭС-1 ОАО «Мосэнерго». Здесь предъявлялись высокие требования к аэродинамическому сопротивлению глушителей, которые было необходимо разместить в существующие газоходы станции.

Для снижения шума газовых трактов котлов ст. № 6, 7 ГЭС-1 филиала ОАО «Мосэнерго» МЭИ разработал целую систему шумоглушения. Система шумоглушения состоит из следующих элементов: пластинчатого глушителя, облицованных звукопоглощающим материалом поворотов газовых трактов, разделительной звукопоглощающей перегородки и пандуса. Наличие разделительной звукопоглощающей перегородки, пандуса и звукопоглощающей облицовки поворотов газоходов котлов, помимо снижения уровней шума, способствует снижению аэродинамического сопротивления газовых трактов энергетических котлов ст. № 6, 7 в результате исключения сталкивания потоков дымовых газов в месте их соединения, организации более плавных поворотов дымовых газов в газовых трактах. Аэродинамические измерения показали, что суммарное аэродинамическое сопротивление газовых трактов котлов за дымососами за счет установки системы шумоглушения практически не увеличилось. Общий вес системы шумоглушения составил около 2,23 т.

Опыт снижения уровня шума от воздухозаборов дутьевых вентиляторов котлов дан в . В статье рассмотрены примеры снижения шума воздухозаборов котлов глушителями конструкции МЭИ. Здесь приведены глушители для воздухозабора дутьевого вентилятора ВДН-25х2К котла БКЗ-420-140 НГМ ст. № 10 ТЭЦ-12 ОАО «Мосэнерго» и водогрейных котлов через подземные шахты (на примере котлов

ПТВМ-120 РТС «Южное Бутово») и через каналы, расположенные в стене здания котельной (на примере котлов ПТВМ-30 РТС «Солнцево»). Первые два случая компоновки воздуховодов являются довольно типичными для энергетических и водогрейных котлов, а особенностью третьего случая является отсутствие участков, на которых может быть установлен глушитель и высокие скорости потока воздуха в каналах.

Разработаны и внедрены в 2009 г. меры по снижению шума с помощью звукопоглощающих экранов от четырех трасформаторов связи марки ТЦ ТН-63000/110 ТЭЦ-16 ОАО «Мосэнерго». Звукопоглощающие экраны устанавливаются на расстоянии 3 м от трансформаторов. Высота каждого звукопоглощающего экрана - 4,5 м, а длина изменяется от 8 до 11 м. Звукопоглощающий экран состоит из отдельных панелей, установленных в специальные стойки. В качестве панелей экранов применяются стальные панели со звукопоглощающей облицовкой. Панель с лицевой стороны закрывается гофрированным металлическим листом, а со стороны трансформаторов - перфорированным металлическим листом с коэффициентом перфорации 25 %. Внутри панелей экранов находится негорючий, негигроскопичный звукопоглощающий материал.

Результаты испытаний показали, что уровни звукового давления после установки экрана снизились в контрольных точках до 10-12 дБ.

В настоящее время разработаны проекты по снижению шума от градирен и трансформаторов ТЭЦ-23 и от градирен ТЭЦ-16 ОАО «Мосэнерго» с помощью экранов.

Продолжалось активное внедрение глушителей шума МЭИ для водогрейных котлов . Только за последние три года установлены глушители на котлах ПТВМ-50, ПТВМ-60, ПТВМ-100 и ПТВМ-120 на РТС «Рублёво», «Строгино», «Кожухово», «Волхонка-ЗИЛ», «Бирюлёво», «Химки-Ховрино», «Красный Строитель», «Чертаново», «Тушино-1», «Тушино-2», «Тушино-5», «Новомосковская», «Бабушкинская-1», «Бабушкинская-2», «Красная Пресня», КТС-11, КТС-18, КТС-24 г. Москвы и др.

Испытания всех установленных глушителей показали высокую акустическую эффективность и надёжность, что подтверждается актами о внедрении. В настоящее время эксплуатируются более 200 глушителей.

Внедрение глушителей МЭИ продолжается.

В 2009 г. заключено соглашение в области поставки комплексных решений для снижения шумового воздействия от энергетического оборудования между МЭИ и Центральным ремонтным заводом (ЦРМЗ г. Москва). Это позволит более широко внедрять разработки МЭИ на объектах энергетики страны. ЗАКЛЮЧЕНИЕ

Разработанный комплекс глушителей МЭИ для снижения шума от различного энергетического оборудования показал необходимую акустическую эффективность и учитывает специфику работы на объектах энергетики. Глушители прошли длительное эксплуатационное апробирование.

Рассмотренный опыт их применения позволяет рекомендовать глушители МЭИ для широкого использования на объектах энергетики страны.

СПИСОК ЛИТЕРАТУРЫ

1. Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН 2.2.1/2.1.1.567-01. М.: Минздрав России, 2001.

2. Григорьян Ф.Е., Перцовский Е.А. Расчет и проектирование глушителей шума энергоустановок. Л.: Энергия, 1980. - 120 с.

3. Борьба с шумом на производстве / под ред. Е.Я. Юдина. М.: Машиностроение. 1985. - 400 с.

4. Тупов В.Б. Снижение шума от энергетического оборудования. М.: Издательство МЭИ. 2005. - 232 с.

5. Тупов В.Б. Шумовое воздействие энергетических объектов на окружающую среду и методы его снижения. В справочнике: «Промышленная теплоэнергетика и теплотехника» / под общ.ред. А.В. Клименко, В.М. Зорина, Издательство МЭИ, 2004. Т. 4. С. 594-598.

6. Тупов В.Б. Шум от энергетического оборудования и способы его снижения. В учебном пособии: «Экология энергетики». М.: Издательство МЭИ, 2003. С. 365-369.

7. Тупов В.Б. Снижение уровня шума от энергетического оборудования. Современные природоохранные технологии в электроэнергетике: Информационный сборник / под общ ред. В.Я. Путилова. М.: Издательский дом МЭИ, 2007, С.251-265.

8. Марченко М.Е., Пермяков А.Б. Современные системы шумоглушения при сбросах больших потоков пара в атмосферу // Теплоэнергетика. 2007. №6. С. 34-37.

9. Лукащук В.Н. Шум при продувках пароперегревателей и разработка мероприятий по снижению его влияния на окружающую среду: дисс... канд. тех. наук: 05.14.14. М., 1988. 145 с.

10. Яблоник Л.Р. Шумозащитные конструкции турбинного и котельного оборудования: теория и расчет: дисс. ... док. тех. наук. СПб., 2004. 398 с.

11. Глушитель шума выброса пара (варианты): Патент

на полезную модель 51673 РФ. Заявка №2005132019. Заявл. 18.10.2005 / В.Б. Тупов, Д.В. Чугунков. - 4 с: ил.

12. Тупов В.Б., Чугунков Д.В. Глушитель шума выброса пара // Электрические станции. 2006. №8. С. 41-45.

13. Тупов В.Б., Чугунков Д.В. Использование глушителей шума при сбросах пара в атмосферу/УЛовое в российской электроэнергетике. 2007. №12. С.41-49

14. Тупов В.Б., Чугунков Д.В. Глушители шума на сбросах пара энергетических котлов// Теплоэнергетика. 2009. №8. С.34-37.

15. Тупов В.Б., Чугунков Д.В., Семин С.А. Снижение шума от выхлопных трактов газотурбинных установок с котлами-утилизаторами // Теплоэнергетика. 2009. № 1. С. 24-27.

16. Тупов В.Б., Краснов В.И. Опыт снижение уровня шума от воздухозаборов дутьевых вентиляторов котлов// Теплоэнергетика. 2005. №5. С. 24-27

17. Tupov V.B. Noise problem from power stations in Moscow// 9th International Congress on Sound and Vibration Orlando, Florida, USA, 8-11, July 2002.P. 488-496.

18. Tupov V.B. Noise reduction from blow fans of hot-water boilers//ll th International Congress on Sound and Vibration, St.Petersburg, 5-8 July 2004. P. 2405-2410.

19. Тупов В.Б. Способы снижения шума от водогрейных котлов РТС// Теплоэнергетика. № 1. 1993. С. 45-48.

20. Tupov V.B. Noise problem from power stations in Moscow// 9th International Congress on Sound and Vibration, Orlando, Florida, USA, 8-11, July 2002. P. 488^96.

21. Ломакин Б.В., Тупов В.Б. Опыт снижения шума на прилегающей к ТЭЦ-26 территории // Электрические станции. 2004. №3. С. 30-32.

22. Тупов В.Б., Краснов В.И. Проблемы снижения шума от энергетических объектов при расширении и модернизации// I специализированная тематическая выставка «Экология в энергетике-2004»: Сб. докл. Москва, ВВЦ, 26-29 октября 2004 г. М., 2004. С. 152-154.

23. Тупов В.Б. Опыт снижения шума энергетических установок/Я1 Всероссийская научно-практическая конференция с международным участием «Защита населения от повышенного шумового воздействия», 17-19 марта 2009 г. Санкт-Петербург., С. 190-199.

Минздрав России

Москва

1. Разработаны Научно-исследовательским институтом медицины труда Российской Академии наук (Суворов Г.А., Шкаринов Л.Н., Прокопенко Л.В., Кравченко О.К.), Московским НИИ гигиены им. Ф.Ф. Эрисмана (Карагодина И.Л., Смирнова Т.Г).

2. Утверждены и введены в действие постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. N 36.

3. Введены взамен «Санитарных норм допустимых уровней шума на рабочих местах» N 3223-85, «Санитарных норм допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки» N 3077-84, «Гигиенических рекомендаций по установлению уровней шума на рабочих местах с учетом напряженности и тяжести труда» N 2411-81.

УТВЕРЖДЕНО
Постановлением Госкомсанэпиднадзора
России от 31 октября 1996 г. N 36
Дата введения с момента утверждения

1. Область применения и общие положения

1.1. Настоящие санитарные нормы устанавливают классификацию шумов; нормируемые параметры и предельно допустимые уровни шума на рабочих местах, допустимые уровни шума в помещениях жилых, общественных зданий и на территории жилой застройки.

1.2. Санитарные нормы являются обязательными для всех организаций и юридических лиц на территории Российской Федерации независимо от форм собственности, подчинения и принадлежности и физических лиц независимо от гражданства.

1.3. Ссылки а требования санитарных норм должны быть учтены в Государственных стандартах и во всех нормативно-технических документах, регламентирующих планировочные, конструктивные, технологические, сертификационные, эксплуатационные требования к производственным объектам, жилым, общественным зданиям, технологическому, инженерному, санитарно-техническому оборудованию и машинам, транспортным средствам, бытовым приборам.

1.4. Ответственность за выполнение требований Санитарных норм возлагается в установленном законом порядке на руководителей и должностных лиц предприятий, учреждений и организаций, а также граждан.

1.5. Контроль за выполнением Санитарных норм осуществляется органами и учреждениями госсанэпиднадзора России в соответствии с Законом РСФСР «О санитарно-эпидемиологическом благополучии населения» от 19.04.91 и с учетом требований действующих санитарных правил и норм.

1.6. Измерение и гигиеническая оценка шума, а также профилактические мероприятия должны проводиться в соответствии с руководством 2.2.4/2.1.8-96 «Гигиеническая оценка физических факторов производственной и окружающей среды» (в стадии утверждения).

1.7. С утверждением настоящих санитарных норм утрачивают силу «Санитарные нормы допустимых уровней шума на рабочих местах» N 3223-85, «Санитарные нормы допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки» N 3077-84, «Гигиенические рекомендации по установлению уровней шума на рабочих местах с учетом напряженности и тяжести труда» N 2411-81.

2.1. Закон РСФСР «О санитарно-эпидемиологическом благополучии населения» от 19.04.91.

2.2. Закон Российской Федерации «Об охране окружающей природной среды» от 19.12.91.

2.3. Закон Российской Федерации «О защите прав потребителей» от 07.02.92.

2.4. Закон Российской Федерации «О сертификации продукции и услуг» от 10.06.93.

2.5. «Положение о порядке разработки, утверждения, издания, введения в действие федеральных, республиканских и местных санитарных правил, а также о порядке действия на территории РСФСР общесоюзных санитарных правил», утвержденное постановлением Совета Министров РСФСР от 01.07.91 N 375.

2.6. Постановление Государственного комитета санэпиднадзора России «Положение о порядке выдачи гигиенических сертификатов на продукцию» от 05.01.93 N 1.

3. Термины и определения

3.1. Звуковое давление — переменная составляющая давления воздуха или газа, возникающая в результате звуковых колебаний, Па.

3.2. Эквивалентный /по энергии/ уровень звука, LА.экв., дБА, непостоянного шума — уровень звука постоянного широкополосного шума, который имеет такое же среднеквадратичное звуковое давление, что и данный непостоянный шум в течение определенного интервала времени.

3.3. Предельно допустимый уровень (ПДУ) шума — это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

3.4. Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

3.5. Максимальный уровень звука, LА.макс., дБА — уровень звука, соответствующий максимальному показателю измерительного, прямопоказывающего прибора (шумомера) при визуальном отсчете, или значение уровня звука, превышаемое в течение 1% времени измерения при регистрации автоматическим устройством.

4. Классификация шумов, воздействующих на человека

4.1. По характеру спектра шума выделяют:

  • широкополосный шум с непрерывным спектром шириной более 1 октавы;
  • тональный шум, в спектре которого имеются выраженные тоны. Тональный характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

4.2. По временным характеристикам шума выделяют:

  • постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно»;
  • непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно».

4.3. Непостоянные шумы подразделяют на:

  • колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени;
  • прерывистый шум, уровень звука которого ступенчато изменяется (на 5дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;
  • импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристиках «импульс» и «медленно», отличаются не менее чем на 7 дБ.

5. Нормируемые параметры и предельно допустимые уровни шума на рабочих местах

5.1. Характеристикой постоянного шума на рабочих местах являются уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, определяемые по формуле:

Где Р — среднеквадратичная величина звукового давления, Па;
Р0 — исходное значение звукового давления в воздухе равное 2·10-5Па.

5.1.1. Допускается в качестве характеристики постоянного широкополосного шума на рабочих местах принимать уровень звука в дБА, измеренный на временной характеристике «медленно» шумомера, определяемый по формуле:

Где РА — среднеквадратичная величина звукового давления с учетом коррекции «А» шумомера, Па.

5.2. Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень звука в дБА.

5.3. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с Руководством 2.2.013-94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести, напряженности трудового процесса».

6. Нормируемые параметры и допустимые уровни шума в помещениях жилых, общественных зданий и территории жилой застройки

6.1. Нормируемыми параметрами постоянного шума являются уровни звукового давления L, дБ, в октавных полосах со среднегеометрическими частотами: 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Для ориентировочной оценки допускается использовать уровни звука LA, дБА.

6.2. Нормируемыми параметрами непостоянного шума являются эквивалентные (по энергии) уровни звука LАэкв., дБА, и максимальные уровни звука LАмакс., дБА.

Оценка непостоянного шума на соответствие допустимым уровням должна проводиться одновременно по эквивалентному и максимальному уровням звука. Превышение одного из показателей должно рассматриваться как несоответствие настоящим санитарным нормам.

6.3. Допустимые значения уровней звукового давления в октавных полосах частот, эквивалентных и максимальных уровней звука проникающего шума в помещениях жилых и общественных зданий и шума на территории жилой застройки.

Список литературы

  • Руководство 2.2.4/2.1.8.000-95 «Гигиеническая оценка физических факторов производственной и окружающей среды».
  • Руководство 2.2.013-94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести, напряженности трудового процесса».
  • Суворов Г. А., Денисов Э. И., Шкаринов Л. Н. Гигиеническое нормирование производственных шумов и вибраций. — М.: Медицина, 1984. — 240 с.
  • Суворов Г. А., Прокопенко Л. В., Якимова Л. Д. Шум и здоровье (эколого-гигиенические проблемы). — М: Союз, 1996. — 150 с.
  • Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях. МГСН 2.04.97 (Московские городские строительные нормы). — М., 1997. — 37 с.

Для устранения каждого из этих шумов требуются различные способы. Кроме того, каждый тип шума имеет свои свойства и параметры, и их необходимо учитывать при производстве малошумных холодильных чиллеров .

Можно применить большое количество различной изоляции и не добиться желаемого результата, а можно напротив, применив минимальное количество «правильного» материала в нужном месте, используя изоляцию по технологии, добиться отличной малошумности.

Для пониманию сути процесса звукоизоляции обратимся к основным методам достижения малошумности промышленных водоохладителей.

Для начала необходимо определиться с базовыми терминами.

Шум нежелательный, неблагоприятный для целевой деятельности человека в радиусе его распространения звук.

Звук волновое распространение колеблющихся, вследствие внешнего воздействия частиц в некоторый среде - твердой, жидкой или газообразной.

Есть и другие менее распространенные и существенно более дорогие и громоздкие решения для достижения тишины, приближенной к абсолютной, если этого требует место установки водоохладителя . Например, шумоиззоляции технического помещения, где находится компрессорно-испарительный блока чиллера , использование водяных конденсаторов или мокрых градирен без применения вентиляторов, и некоторые другие более экзотичные, но они крайне редко используются на практике.