Отрицательный заряд атома равен. Строение и заряд ядра атома

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

То, что все предметы состоят из элементарных частиц, предполагали еще ученые Древней Греции. Но ни доказать этот факт, ни опровергнуть в те времена не было никакой возможности. Да и о свойствах атомов в древности могли лишь догадываться, основываясь на собственных наблюдениях за различными веществами.

Доказать, что все вещества состоят из элементарных частиц, удалось лишь в 19-м веке и то косвенно. В это же время физики и химики по всему миру пытались создать единую теорию элементарных частиц, описывающую их строение и объясняющую различные свойства, такие, например, как заряд ядра.

Изучению молекул, атомов и их строения были посвящены труды многих ученых. Физика постепенно перешла в изучение микромира - элементарных частиц, их взаимодействия и свойств. Ученые стали интересоваться, из чего состоит выдвигать гипотезы и пытаться их доказать, хотя бы косвенно.

В результате в качестве базовой теории была принята планетарная предложенная Эрнестом Резерфордом и Нильсом Бором. Согласно этой теории, заряд ядра любого атома положительный, в то время как по его орбитам вращаются отрицательно заряженные электроны, в итоге делая атом электрически нейтральным. Со временем данная теория была многократно подтверждена разного рода экспериментами, начиная с опытов одного из ее соавторов.

Современная ядерная физика считает теорию Резерфорда-Бора фундаментальной, все исследования атомов и их элементов основываются на ней. С другой стороны большинство гипотез, появившихся за последние 150 лет, практически так и не были подтверждены. Получается, что ядерная физика в своем большинстве является теоретической ввиду сверхмалых размеров изучаемых объектов.

Конечно же, в современном мире определить заряд ядра алюминия, например (или любого другого элемента) намного проще, чем в 19-м веке и тем более — в Древней Греции. Но делая новые открытия в данной области, ученые порой приходят к удивительным заключениям. Пытаясь найти решение одной задачи, физика сталкивается с новыми проблемами и парадоксами.

Изначально теория Резерфорда говорит о том, что химические свойства вещества зависят от того, каков заряд ядра его атома и, как следствие, от числа электронов, вращающихся по его орбитам. Современная химия и физика в полной мере подтверждают данную версию. Несмотря на то, что изучение структуры молекул изначально отталкивалось от простейшей модели — атома водорода, заряд ядра которого равен 1, теория в полной мере распространяется на все элементы таблицы Менделеева, включая и полученные искусственным путем в конце прошлого тысячелетия.

Любопытно, что еще задолго до исследований Резерфорда английский химик, врач по образованию Вильям Проут заметил, что удельный вес различных веществ кратен данному показателю водорода. Он тогда предположил, что все иные элементы попросту состоят из водорода на каком-то простейшем уровне. Что, например, частица азота — это 14 таких минимальных частиц, кислорода - 16 и т. д. Если рассматривать данную теорию глобально в современной интерпретации, то в целом она верна.

Белкин И.К. Заряд атомного ядра и периодическая система элементов Менделеева //Квант. - 1984. - № 3. - С. 31-32.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Современные представления о строении атома возникли в 1911 - 1913 годах, после знаменитых опытов Резерфорда по рассеянию альфа-частиц. В этих опытах было показано, что α -частицы (их заряд положительный), попадая на тонкую металлическую фольгу, иногда отклоняются на большие углы и даже отбрасываются назад. Это можно было объяснить только тем, что положительный заряд в атоме сконцентрирован в ничтожно малом объеме. Если представить его в виде шарика, то, как установил Ре- зерфорд, радиус этого шарика должен быть равен примерно 10 -14 -10 -15 м, что в десятки и сотни тысяч раз меньше размеров атома в целом (~10 -10 м). Только вблизи столь малого по размерам положительного заряда может существовать электрическое поле, способное отбросить α -частицу, мчащуюся со скоростью около 20 000 км/с. Эту часть атома Резерфорд назвал атомным ядром.

Так возникла идея о том, что атом любого вещества состоит из положительно заряженного ядра и отрицательно заряженных электронов, существование которых в атомах было установлено ранее. Очевидно, что, поскольку атом в целом электрически нейтрален, заряд ядра должен быть численно равен заряду всех имеющихся в атоме электронов. Если обозначить модуль заряда электрона буквой е (элементарный заряд), то заряд q я ядра должен быть равен q я = Ze , где Z - целое число, равное числу электронов в атоме. Но чему равно число Z ? Чему равен заряд q я ядра?

Из опытов Резерфорда, позволивших установить размеры ядра, в принципе, можно определить и величину заряда ядра. Ведь электрическое поле, отбрасывающее α -частицу, зависит не только от размеров, но и от заряда ядра. И Резерфорд в самом деле оценил заряд ядра. По Резерфорду заряд ядра атома того или иного химического элемента примерно равен половине его относительной атомной массы А , умноженной на элементарный заряд е , то есть

\(~Z = \frac{1}{2}A\).

Но, как это ни странно, истинный заряд ядра был установлен не Резер- фордом, а одним из читателей его статей и докладов - голландским ученым Ван-ден-Бруком (1870-1926). Странно потому, что Ван-ден-Брук по образованию и профессии был не физиком, а юристом.

Почему Резерфорд, оценивая заряды атомных ядер, соотносил их с атомными массами? Дело в том, что когда в 1869 году Д. И. Менделеев создал периодическую систему химических элементов, он расположил элементы в порядке возрастания их относительных атомных масс. И за истекшие сорок лет все привыкли к тому, что самая важная характеристика химического элемента - его относительная атомная масса, что именно она отличает один элемент от другого.

Между тем именно в это время, в начале XX века, с системой элементов возникли трудности. При исследовании явления радиоактивности был открыт ряд новых радиоактивных элементов. И для них в системе Менделеева как будто бы не было места. Казалось, что система Менделеева требовала изменения. Этим и был особенно озабочен Ван-ден-Брук. В течение нескольких лет им было предложено несколько вариантов расширенной системы элементов, в которой хватило бы места не только для неоткрытых еще стабильных элементов (о местах для них «позаботился» еще сам Д. И. Менделеев), но и для радиоактивных элементов тоже. Последний вариант Ван-ден-Брук опубликовал в начале 1913 года, в нем было 120 мест, а уран занимал клетку под номером 118.

В том же 1913 году были опубликованы результаты последних исследований по рассеянию α -частиц на большие углы, проведенных сотрудниками Резерфорда Гейгером и Марсденом. Анализируя эти результаты, Ван-ден-Брук сделал важнейшее открытие. Он установил, что число Z в формуле q я = Ze равно не половине относительной массы атома химического элемента, а его порядковому номеру. И притом порядковому номеру элемента в системе Менделеева, а не в его, Ван-ден-Брука, 120-местной системе. Система Менделеева, оказывается, не нуждалась в изменении!

Из идеи Ван-ден-Брука следует, что всякий атом состоит из атомного ядра, заряд которого равен порядковому номеру соответствующего элемента в системе Менделеева, умноженному на элементарный заряд, и электронов, число которых в атоме тоже равно порядковому номеру элемента. (Атом меди, например, состоит из ядра с зарядом, равным 29е , и 29 электронов.) Стало ясно, что Д. И. Менделеев интуитивно расположил химические элементы в порядке возрастания не атомной массы элемента, а заряда его ядра (хотя он об этом и не знал). Следовательно, один химический элемент отличается от другого не своей атомной массой, а зарядом атомного ядра. Заряд ядра атома - вот главная характеристика химического элемента. Существуют атомы совершенно различных элементов, но с одинаковыми атомными массами (они имеют специальное название - изобары).

То, что не атомные массы определяют положение элемента в системе, видно и из таблицы Менделеева: в трех местах нарушено правило возрастания атомной массы. Так, относительная атомная масса у никеля (№ 28) меньше, чем у кобальта (№ 27), у калия (№ 19) она меньше, чем у аргона (№ 18), у иода (№ 53) меньше, чем у теллура (№ 52).

Предположение о взаимосвязи заряда атомного ядра и порядкового номера элемента легко объясняло и правила смещения при радиоактивных превращениях, открытые в том же 1913 году («Физика 10», § 103). В самом деле, при испускании ядром α -частицы, заряд которой равен двум элементарным зарядам, заряд ядра, а значит, и его порядковый номер (теперь обычно говорят - атомный номер) должен уменьшиться на две единицы. При испускании же β -частицы, то есть отрицательно заряженного электрона, он должен увеличиться на одну единицу. Именно в этом и состоят правила смещения.

Идея Ван-ден-Брука очень скоро (буквально в том же году) получила первое, правда косвенное, опытное подтверждение. Несколько позже правильность ее была доказана прямыми измерениями заряда ядер многих элементов. Понятно, что она сыграла важную роль в дальнейшем развитии физики атома и атомного ядра.

Из планетарной модели строения атомов нам известно, что атом представляет собой ядро, и вращающееся вокруг него облако электронов. Причем расстояние между электронами и ядром в десятки и сотни тысяч раз больше, чем размер самого ядра.

Что же представляет собой само ядро? Это маленький твердый неделимый шарик или оно состоит из более мелких частиц? Ни один существующий в мире микроскоп не в состоянии наглядно показать нам, что происходит на таком уровне. Там все слишком маленькое. Тогда как быть? Возможно ли вообще изучить физику атомного ядра? Как узнать состав и характеристики атомного ядра, если исследовать его нет возможности?

Заряд ядра атома

Самыми разнообразными косвенными опытами, высказывая гипотезы и проверяя их на практике, путем проб и ошибок, ученым удалось исследовать строение атомного ядра. Оказалось, что ядро состоит из еще более мелких частиц. От количества этих частиц зависит размер ядра, его заряд и химические свойства вещества. Причем частицы эти обладают положительным зарядом, что и компенсирует отрицательный заряд электронов атома. Частицы эти назвали протонами. Их количество в нормальном состоянии всегда равно количеству электронов. Вопрос, как определить заряд ядра, больше не стоял. Заряд ядра атома в нейтральном состоянии всегда равен числу вращающихся вокруг него электронов и противоположен по знаку заряду электронов. А определять количество и заряд электронов физики уже научились.

Строение атомного ядра: протоны и нейтроны

Однако в процессе дальнейших исследований возникла новая проблема. Оказалось, что протоны, обладая одинаковым зарядом, в некоторых случаях вдвое различаются по массе. Это вызвало множество вопросов и не состыковок. В конце концов, удалось установить, что в состав атомного ядра, кроме протонов входят еще некие частицы, практически равные протонам по массе, однако не обладающие никаким зарядом. Частицы эти назвали нейтронами. Обнаружение нейтронов разрешило все не состыковки в расчетах. В итоге протоны и нейтроны, как составляющие элементы ядра получили название нуклонов. Расчет любых значений, касающихся характеристик ядра, стал значительно более простым понятным. В образовании заряда ядра нейтроны участия не принимают, поэтому влияние их на химические свойства вещества практически не проявляется, однако нейтроны участвуют в образовании массы ядер, соответственно, влияют на гравитационные свойства ядра атома. Таким образом, присутствует некоторое косвенное влияние нейтронов на свойства вещества, но оно крайне незначительно.

Атомы любых веществ являются электрически нейтральными частицами. Атом состоит из ядра и совокупности электронов. Ядро несет положительный заряд, суммарный заряд которого равен сумме зарядов всех электронов атома.

Общие сведения о заряде ядра атома

Заряд ядра атома определяет местоположение элемента в периодической системе Д.И. Менделеева и соответственно химические свойства вещества, состоящего их этих атомов и соединений этих веществ. Величина заряда ядра равна:

где Z - номер элемента в таблице Менделеева, e - величина заряда электрона или .

Элементы с одинаковыми числами Z, но разными атомными массами называют изотопами. Если элементы имеют одинаковые Z, то у них ядро имеет равное число протонов, а если атомные массы различны, то число нейтронов в ядрах этих атомов разное. Так, у водорода имеется два изотопа: дейтерий и тритий.

Ядра атомов имеют положительный заряд, так как состоят из протонов и нейтронов. Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода. Протон - это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как , тогда можно записать, что:

Масса покоя протона () примерно равна:

Подробнее о протоне можно узнать, прочитав раздел «Заряд протона».

Эксперименты по измерению заряда ядра

Первым заряды ядер измерил Мозли в 1913 г. Измерения были косвенными. Ученый определил связь между частотой рентгеновского излучения () и зарядом ядра Z.

где C и B - постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра измерил Чедвик в 1920 г. Он проводил рассеивание - частиц на металлических пленках, по сути, повторяя опыты Резерфорда, которые привели Резерфорда к построению ядерной модели атома.

В этих экспериментах - частицы пропускались через тонкую металлическую фольгу. Резерфорд выяснил, что в большинстве случаев частицы проходили сквозь фольгу, отклоняясь на малые углы от первоначального направления движения. Это объясняется тем, что - частицы отклоняются под воздействием электрических сил электронов, которые имеют значительно меньшую массу, чем - частицы. Иногда, довольно редко - частицы отклонялись на углы превышающие 90 o . Этот факт Резерфорд объяснил наличием в атоме заряда, который локализован в малом объеме, и этот заряд связан с массой, которая много больше, чем у - частицы.

Для математического описания результатов своих экспериментов Резерфорд вывел формулу, которая определяет угловое распределение - частиц после их рассеяния атомами. При выводе этой формулы ученый использовал закон Кулона для точечных зарядов и при этом считал, что масса ядра атома много больше, чем масса - частицы. Формулу Резерфорда можно записать как:

где n - количество рассеивающих ядер на единицу площади фольги; N - число - частиц, которые проходят за 1 секунду через единичную площадку, перпендикулярно к направлению потока - частиц; - количество частиц, которые рассеиваются внутри телесного угла - заряд центра рассеяния; - масса - частицы; - угол отклонения - частиц; v - скорость - частицы.

Формулу Резерфорда (3) можно использовать для того, чтобы найти заряд ядра атома (Z), если провести сравнение числа падающих - частиц (N) с числом (dN) частиц рассеянных под углом , то функция будет зависеть только от заряда рассеивающего ядра. Проводя опыты и применяя формулу Резерфорда Чедвик нашел заряды ядер платины, серебра и меди.

Примеры решения задач

ПРИМЕР 1

Задание Пластину из металла облучают - частицами, имеющими большую скорость. Некоторая часть этих частиц при упругом взаимодействии с ядрами атомов металла изменяет направление своего движения на противоположное. Каков заряд ядра атомов металла (q), если минимальное расстояние сближения частицы и ядра равно r. Масса - частицы равна ее скорость v. При решении задачи релятивистскими эффектами можно пренебречь. Частицы считать точечными, ядро неподвижным и точечным.
Решение Сделаем рисунок.

Двигаясь в направлении ядра атома - частица преодолевает силу Кулона, отталкивающую ее от ядра, так как частица и ядро имеют положительные заряды. Кинетическая энергия движущейся - частицы переходит в потенциальную энергию взаимодействия ядра атома металла и - частицы. За основу решения задачи следует принять закон сохранения энергии.:

Потенциальную энергию точечных заряженных частиц найдем как:

где заряд - частицы равен: , так как и - частиц - это ядро атома гелия, которое состоит из двух протонов и двух нейтронов, , так как будем считать, что эксперимент проводят в воздухе.

Кинетическая энергия - частицы до соударения с ядром атома равна:

В соответствии с (1.1) приравняем правые части выражений (1.2) и (1.3), имеем:

Из формулы (1.4) выразим заряд ядра:

Ответ