Производство передача потребление электрической энергии. Доклад: Использование электроэнергии

БОУ Чувашской Республики СПО «АСХТ» Минобразования Чувашии

МЕТОДИЧЕСКАЯ

РАЗРАБОТКА

открытого занятия по дисциплине «Физика»

Тема: Производство, передача и потребление электрической энергии

высшей квалификационной категории

Алатырь, 2012год

РАССМОТРЕНО

на заседании методической комиссии

гуманитарных и естественнонаучных

дисциплин

Протокол № __ от «___» ______ 2012г.

Председатель_____________________

Рецензент: Ермакова Н.Е., преподаватель БОУ ЧР СПО «АСХТ», председатель ПЦК гуманитарных и естественнонаучных дисциплин

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Трудно представить существование современной цивилизации без электроэнергии. Если в нашей квартире отключается свет хотя бы на несколько минут, то мы уже испытываем многочисленные неудобства. А что произойдет при отключении электроэнергии на несколько часов! Электрический ток – основной источник электроэнергии. Вот почему так важно представлять физические основы получения, передачи и использования переменного электрического тока.

  1. Пояснительная записка

  2. Содержание основной части

  3. Библиографический список

  4. Приложения.

Пояснительная записка

Цели:
- познакомить студентов с физическими основами производства, передачи и

использования электрической энергии

Способствовать формированию у студентов информационной и коммуникативной

компетентностей

Углубить познания о развитии электроэнергетики и связанных с этим экологических

проблем, воспитание чувства ответственности за сохранение окружающей среды

Обоснование выбранной темы:

Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Электроэнергия была и остается главной составляющей жизни человека. Какой будет энергетика ХХІ века? Чтобы дать ответы на этот вопрос необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря Данное занятие позволяет сформировать у студентов умение перерабатывать информацию и применять знания теории на практике, развивать навыки самостоятельной работы с различными источниками информации. На этом занятии раскрываются возможности формирования информационной и коммуникативной компетентностей

План занятия

по дисциплине «Физика»
Дата: 16.04.2012 г.
Группа: 11 тв
Цели:

- образовательная: - познакомить студентов с физическими основами производства,

передачи и использования электрической энергии

Способствовать формированию у студентов информационной и

коммуникативной компетентностей

Углубить познания о развитии электроэнергетики и связанных с

этим экологических проблем, воспитание чувства ответственности

за сохранение окружающей среды

- развивающая:: - формировать умений перерабатывать информацию и применять

знания теории на практике;

Развивать навыки самостоятельной работы с различными

источниками информации

Развивать познавательный интерес к предмету.
- воспитательная: - воспитывать познавательную активность студентов;

Воспитывать умение слушать и быть услышанным;

Воспитывать самостоятельность студентов в приобретении новых

знаний


- воспитывать коммуникативные качества при работе в группах
Задача: формирование ключевых компетенций при изучении производства, передачи и использования электрической энергии
Вид занятия - урок
Тип занятия - комбинированный урок
Средства обучения: учебники, справочники, раздаточный материал, мультимедийный проектор,

экран, электронная презентация


Ход занятия:

  1. Организационный момент (проверка отсутствующих, готовности группы к уроку)

  2. Организация целевого пространства

  3. Проверка знаний студентов, сообщение темы и плана опроса, постановка цели
Тема: «Трансформаторы»

Действия педагога

Действия студентов


Методы проведения



  1. Проводит фронтальную беседу, корректирует ответы студентов:
1) В чём преимущества электрической энергии перед другими видами энергии?

2) С помощью какого устройства изменяют силу переменного тока и напряжение?

3) Каково его назначение?

4) Каково устройство трансформатора?

6) Что такое коэффициент трансформации? Каким он бывает численно?

7) Какой трансформатор называют повышающим, какой понижающим?

8) Что называют мощностью трансформатора?


  1. Предлагает решить задачу

  1. Проводит тестирование

  2. Предлагает студентам ключи к тесту для проведения самопроверки

  1. Отвечают на вопросы

    1. Находят правильные ответы

    2. Корректируют ответы товарищей

    3. Вырабатывают критерии своего поведения

    4. Сравнивают и находят общее и отличное в явлениях

  1. Анализируют решение, ищут ошибки, обосновывают ответ

  1. Отвечают на вопросы теста

  2. Проводят взаимопроверку тестов

Фронтальная беседа

Решение задач

Тестирование


  1. Подведение итогов проверки основных положений изученного раздела

  2. Сообщение темы, постановка цели, плана изучения нового материала

Тема: «Производство, передача и потребление электроэнергии»
План: 1) Производство электроэнергии:

а) Промышленная энергетика (ГЭС, ТЭС, АЭС)

б) Альтернативная энергетика (ГеоТЭС, СЭС, ВЭС, ПЭС)

2) Передача электрической энергии

3) Эффективное использование электрической энергии

4) Энергетика Чувашской Республики


  1. Мотивация учебной деятельности студентов

Действия педагога

Действия студентов


Метод изучения



  1. Организует целевое пространство, знакомит с планом изучения темы

  2. Знакомит с основными способами производства электроэнергии

  3. Предлагает студентам выделить физические основы производства электроэнергии

  4. Предлагает заполнить обобщающую таблицу

  5. Формирует умения перерабатывать информацию, выделять главное, анализировать, сравнивать, находить общее и отличное, делать выводы;

  1. Осознают цели, записывают план

  1. Слушают, осознают, анализируют

  1. Делают доклад, слушают докладчика, осмысливают услышанное, делают выводы

  1. Исследуют средства, обобщают, делают выводы, заполняют таблицу

  2. Сравнивают, находят общее и отличное

Опережающая самостоятельная работа


Исследование
Доклады студентов

  1. Закрепление нового материала

  1. Обобщение и систематизация материала.

  2. Проведение итогов занятия.

  3. Задание для самостоятельной работы студентов во внеаудиторное время.

  • Учебник § 39-41, закончить заполнение таблицы
Тема: Производство, передача и потребление электроэнергии
Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Столь широкое применение электроэнергии объясняется ее преимуществами перед другими видами энергии. Электроэнергия была и остается главной составляющей жизни человека Главные вопросы – сколько энергии нужно человечеству? Какой будет энергетика ХХІ века? Чтобы дать ответы на эти вопросы необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря.

Преобразования энергии различных видов в электрическую энергию происходит на электростанциях. Рассмотрим физические основы производства электроэнергии на электростанциях.

Статистические данные о производстве электроэнергии в России, млрд кВтч

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы:


  • Электростанции промышленной энергетики: ГЭС, ТЭС, АЭС

  • Электростанции альтернативной энергетики: ПЭС, СЭС, ВЭС, ГеоТЭС

Гидроэлектростанции
Гидроэлектростанция представляет собой комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию На ГЭС электроэнергию получают, используя энергию воды, перетекающей с высшего уровня к низшему уровню и вращающей при этом турбину. Плотина – самый важный и самый дорогостоящий элемент ГЭС. Вода перетекает с верхнего бьефа в нижний бьеф по специальным трубопроводам, либо по выполненным в теле плотины каналам и приобретает большую скорость. Струя воды поступает на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под действием центробежной силы струи воды. Вал турбины соединяется с валом электрического генератора, и при вращении ротора генератора механическая энергия ротора преобразуется в электрическую энергию.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Однако гидроэнергетика не безвредна для окружающей среды. При постройке плотины образуется водохранилище. Вода, залившая огромные площади, необратимо изменяет окружающую среду. Подъем уровня реки плотиной может вызвать заболоченность, засоленность, изменения прибрежной растительности и микроклимата. Поэтому так важно создание и использование экологически безвредных гидротехнических сооружений.
Теплоэлектростанции
Тепловая электростанция (ТЭС) – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основными видами топлива для ТЭС являются природные ресурсы – газ, уголь, торф, горючие сланцы, мазут. Тепловые электростанции разделяются на две группы: конденсационные и теплофикационные или теплоцентрали (ТЭЦ). Конденсационные станции снабжают потребителей только электрической энергией. Их сооружают вблизи залежей местного топлива с тем, чтобы не возить его на большие расстояния. Теплоцентрали снабжают потребителей не только электрической энергией, но и теплом – водяным паром или горячей водой, поэтому ТЭЦ сооружают поблизости от приемников теплоты, в центрах промышленных районов и крупных городов для уменьшения протяженности теплофикационных сетей. Топливо транспортируют на ТЭЦ из мест его добычи. В машинном зале ТЭС установлен котел с водой. За счет тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 550°С и под давлением 25 МПа поступает по паропроводу в паровую турбину, назначение которой превращать тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. После паровой турбины водяной пар, имея уже низкое давление и температуру около 25°С, поступает в конденсатор. Здесь пар с помощью охлаждающей воды превращается в воду, которая с помощью насоса снова подается в котел. Цикл начинается снова. ТЭС работают на органическом топливе, но это, к сожалению, невосполнимые природные ресурсы. К тому же, работа ТЭС сопровождается экологическими проблемами: при сгорании топлива происходит тепловое и химическое загрязнение среды, что оказывает губительное воздействие на живой мир водоемов и качество питьевой воды.
Атомные электростанции
Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Атомные электростанции действуют по такому же принципу, что и тепловые электростанции, но используют для парообразования энергию, получающуюся при делении тяжелых атомных ядер (урана, плутония). В активной зоне реактора протекают ядерные реакции, сопровождающиеся выделением огромной энергии. Вода, соприкасающаяся в активной зоне реактора с тепловыделяющими элементами, забирает у них тепло и передает это тепло в теплообменнике также воде, но уже не представляющей опасности радиоактивного излучения. Поскольку вода в теплообменнике превращается в пар, его называют парогенератором. Горячий пар поступает в турбину, преобразующую тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: не требуют привязки к источнику сырья и собственно могут быть размещены в любом месте, при нормальном режиме функционирования считаются экологически безопасными. Но при авариях на АЭС возникает потенциальная опасность радиационного загрязнения среды. Кроме того существенной проблемой остается утилизация радиоактивных отходов и демонтаж отслуживших свой срок АЭС.
Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены, не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии - потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.
Приливные электростанции
Использование энергии приливов началось еще в ХІ веке, когда на берегах Белого и Северного морей появились мельницы и лесопилки. Два раза в сутки уровень океана то поднимается под действием гравитационных сил Луны и Солнца, притягивающих к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13-18 метров. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 метров. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанций в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Ветряные электростанции
Энергия ветра – это косвенная форма солнечной энергии, являющаяся следствием разности температур и давлений в атмосфере Земли. Около 2% поступающей на Землю солнечной энергии превращается в энергию ветра. Ветер – возобновляемый источник энергии. Его энергию можно использовать почти во всех районах Земли. Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Трудность заключается в очень большой рассеянности энергии ветра и в его непостоянстве. Принцип действия ветряных электростанций прост: ветер крутит лопасти установки, приводя в движение вал электрогенератора. Генератор вырабатывает электрическую энергию, и, таким образом, энергия ветра превращается в электрический ток. Производство ВЭС очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ВЭС вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ВЭС, необходимы огромные площади много больше, чем для других типов электрогенераторов. И все же изолированные ВЭС с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло – и гидростанциями, должны занять видное место в энергоснабжении тех районов, где скорость ветра превышает 5 м/с.
Геотермальные электростанции
Геотермальная энергия – это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Геотермальное тепло – это тепло, содержащееся в подземной горячей воде и водяном паре, и тепло нагретых сухих пород. Геотермальные тепловые электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. Источниками геотермальной энергии могут быть подземные бассейны естественных теплоносителей – горячей воды или пара. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Полученный таким способом природный пар после предварительной очистки от газов, вызывающих разрушение труб, направляется в турбины, соединенные с электрогенераторами. Использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. К недостаткам ГеоТЭС относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, ГеоТЭС построить можно не везде, потому что для ее постройки необходимы геологические условия.
Солнечные электростанции
Солнечная энергия – наиболее грандиозный, дешевый, но, и, пожалуй, наименее используемый человеком источник энергии. Преобразование энергии солнечного излучения в электрическую энергию осуществляется с помощью солнечных электростанций. Различают термодинамические СЭС, в которых солнечная энергия сначала преобразуется в тепловую, а затем в электрическую; и фотоэлектрические станции, непосредственно преобразующие солнечную энергию в электрическую энергию. Фотоэлектрические станции бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в труднодоступных местах. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения (отопления, горячего водоснабжения, освещения и питания бытовых электроприборов). Солнечные электростанции обладают заметным преимуществом перед станциями других типов: отсутствием вредных выбросов и экологической чистотой, бесшумностью в работе, сохранением в неприкосновенности земных недр.
Передача электроэнергии на расстояние
Электроэнергия производится вблизи источников топлива или гидроресурсов, в то время как ее потребители находятся повсеместно. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Рассмотрим принципиальную схему передачи электроэнергии от генератора к потребителю. Обычно генераторы переменного тока на электростанциях вырабатывают напряжение, не превышающее 20 кВ, так как при более высоких напряжениях резко возрастает возможность электрического пробоя изоляции в обмотке и в других частях генератора. Для сохранения передаваемой мощности напряжение в ЛЭП должно быть максимальным, поэтому на крупных электростанциях ставят повышающие трансформаторы. Однако напряжение в линии электропередачи ограничено: при слишком высоком напряжении между проводами возникают разряды, приводящие к потерям энергии. Для использования электроэнергии на промышленных предприятиях требуется значительное снижение напряжения, осуществляемое с помощью понижающих трансформаторов. Дальнейшее снижение напряжения до величины порядка 4 кВ необходимо для электрораспределения по местным сетям, т.е. по тем проводам, которые мы видим на окраинах наших городов. Менее мощные трансформаторы снижают напряжение до 220 В (напряжение, используемое большинством индивидуальных потребителей).

Эффективное использование электроэнергии
Электроэнергия занимает существенное место в статье расходов каждой семьи. Ее эффективное использование позволит значительно снизить издержки. Все чаще в наших квартирах «прописываются» компьютеры, посудомоечные машины, кухонные комбайны. Поэтому и плата за электроэнергию весьма значительна. Возросшее энергопотребление приводит к дополнительному потреблению невозобновляемых природных ресурсов: уголь, нефть, газ. При сжигании топлива в атмосферу выбрасывается углекислый газ, что приводит к пагубным климатическим изменениям. Экономия электричества позволяет сократить потребление природных ресурсов, а значит, и снизить выбросы вредных веществ в атмосферу.

Четыре ступени энергосбережения


  • Не забывайте выключать свет.

  • Использовать энергосберегающие лампочки и бытовую технику класса А.

  • Хорошо утеплять окна и двери.

  • Установить регуляторы подачи тепла (батареи с вентилем).

Энергетика Чувашии - одна из самых развитых отраслей промышленности республики, от работы которой напрямую зависит социальное, экономическое и политическое благополучие. Энергетика - это основа функционирования экономики и жизнеобеспечения республики. Работа энергетического комплекса Чувашии настолько прочно связана с повседневной жизнью каждого предприятия, учреждения, фирмы, дома, каждой квартиры и в итоге – каждого жителя нашей республики.


В самом начале XX века, когда электроэнергетика делала еще только первые практические шаги.

До 1917г. на территории современной Чувашии не было ни одной электрической станции общественного пользования. Крестьянские дома освещались лучиной.

В промышленности имелось всего 16 первичных двигателей. В Алатырском уезде электроэнергию производили и использовали на лесопильном заводе, на мукомольных предприятиях. Небольшая электростанция имелась на винокуренном заводе вблизи Марпосада. Собственную электростанцию на маслобойном заводе в г.Ядрине имели купцы Таланцевы. В Чебоксарах небольшую электростанцию имел купец Ефремов. Она обслуживала лесопильное производство и два его дома.

Как в домах, так и на улицах городов Чувашии света почти не было.

Развитие энергетики Чувашии начинается после 1917г. С 1918г. начинается строительство электростанций общественного пользования, разворачивается большая работа по созданию электроэнергетики в г.Алатырь. Первую электростанцию решили построить в то время на бывшем заводе Попова.

В Чебоксарах вопросами электрификации занимался отдел коммунального хозяйства. Его усилиями в 1918г. возобновила работу электростанция на лесопильном заводе, принадлежавшем купцу Ефремову. Электроэнергия по двум линиям поступала в государственные учреждения и на уличное освещение.

Образование Чувашской автономной области (24 июня 1920г.) создало благоприятные условия для развития энергетики. Именно в 1920г. в связи с острой нуждой областной отдел коммунального хозяйства оборудовал первую небольшую электростанцию г.Чебоксары, мощность в 12 кВт.

Мариинско-Посадская электростанция была оборудована в 1919г. Начала давать электроэнергию Марпосадская городская электростанция. Цивильская электростанция была построена в 1919г., но из-за отсутствия линий электропередач отпуск электроэнергии стал производиться только с 1923 года.

Таким образом, первые основы энергетики Чувашии закладывались в годы интервенции и гражданской войны. Создавались первые небольшие городские коммунальные электростанции общественного пользования общей мощностью около 20 кВт.

До революции 1917 года на территории Чувашии не было ни одной электрической станции общественного пользования, в домах царила лучина. При лучине или керосиновой лампе работали даже в небольших мастерских. Здесь же кустари использовали оборудование с механическим приводом. На более солидных предприятиях, где обрабатывали сельскохозяйственные и лесные продукты, варили бумагу, сбивали масло и мололи муку,

имелось 16 маломощных двигателей.

При большевиках пионером энергетики Чувашии стал г. Алатырь. В этом небольшом городке благодаря усилиям местного совнархоза появилась первая общественная электростанция.


В Чебоксарах вся электрификация в 1918 году свелась к тому, что восстановили электростанцию на конфискованном у купца Ефремова лесопильном заводе, который стал называться «Имени 25 октября». Однако ее электроэнергии хватило лишь на освещение некоторых улиц и госучреждений (по статистике в 1920 году городским чиновникам светило около 100 лампочек мощностью 20 свечей).

В 1924 году были построены еще три небольших электростанции, и, для управления увеличивающейся энергетической базой, 1 октября 1924 года было создано Чувашское объединение коммунальных электростанций – ЧОКЭС. В 1925 году Госплан республики принял план электрификации, по которому предусматривалось за 5 лет построить 8 новых электростанций – 5 городских (в Чебоксарах, Канаше, Марпосаде, Цивильске и Ядрине) и 3 сельских (в Ибресях, Вурнарах и Урмарах). Реализация этого проекта позволила электрифицировать 100 сел – в основном Чебоксарского и Цивильского районов и вдоль тракта Чебоксары – Канаш, 700 крестьянских дворов, некоторые кустарные мастерские.
За 1929-1932 годы мощности коммунальных и промышленных электростанций республики выросли почти в 10 раз; выработка электроэнергии этими электростанциями увеличилась почти в 30 раз.

В годы Великой Отечественной войны были проведены большие мероприятия по укреплению и развитию энергетической базы промышленности республики. Рост мощностей происходил главным образом за счёт роста мощностей районных, коммунальных и сельских электростанций. Энергетики Чувашии с честью выдержали тяжёлое испытание и выполнили свой патриотический долг. Они понимали, что производимая электроэнергия необходима, в первую очередь, предприятиям, выполняющим заказы с фронта.


За годы послевоенной пятилетки в Чувашской АССР построено и сдано в эксплуатацию 102 сельских электростанции, вт.ч. 69 ГЭС и 33 ТЭС. Отпуск электроэнергии сельскому хозяйству увеличился в 3 раза по сравнению с 1945 годом.
В 1953 году в Алатыре по приказу, подписанному Сталиным, было начато строительство Алатырской ТЭС. Первый турбогенератор мощностью 4 МВТ был введен в эксплуатацию в 1957 году, 2-й - в 1959 году. По прогнозам, мощности ТЭС должно было хватить до1985 г. как для города, так и района и обеспечить электроэнергией Тургеньевский Светозавод в Мордовии.

Библиографический список


  1. Учебник С.В.Громова «Физика, 10 класс». Москва: Просвещение.

  2. Энциклопедический словарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

  3. Эллион Л., Уилконс У.. Физика. Москва: Наука.

  4. Колтун М. Мир физики. Москва.

  5. Источники энергии. Факты, проблемы, решения. Москва: Наука и техника.

  6. Нетрадиционные источники энергии. Москва: Знание.

  7. Юдасин Л.С.. Энергетика: проблемы и надежды. Москва: Просвещение.

  8. Подгорный А.Н. Водородная энергетика. Москва: Наука.

Приложение

Электростанция

Первичный источник энергии


Схема преобразования

энергии

Преимущества


Недостатки






ГеоТЭС



.
Лист самоконтроля

Закончите предложение:

Энергосистема - это


  1. Электрическая система электростанции

  2. Электрическая система отдельного города

  3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Энергосистема - Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Что является источником энергии на ГЭС?


  1. Нефть, уголь, газ

  2. Энергия ветра

  3. Энергия воды

Какие источники энергии – возобновляемые или невозобновляемые – используются в Республике Чувашия?

Невозобновляемые



Расположите в хронологическом порядке источники энергии, которые становились доступны человечеству, начиная с самых ранних:

А. Электрическая тяга;

Б. Атомная энергия;

В. Мускульная энергия домашних животных;

Г. Энергия пара.



Назовите известные вам источники энергии, использование которых приведет к уменьшению экологических последствий электроэнергетики.


ПЭС
ГеоТЭС

Проверьте себя по ответам на экране и выставьте оценку:

5 верных ответов – 5

4 верных ответа – 4

3 верных ответа - 3


Переменное напряжение можно преобразовывать - повышать или понижать.

Устройства, с помощью которых можно преобразовывать напряжение называются трансформаторами. Работа трансформаторов основана наявлении электромагнитной индукции.

Устройство трансформатора

Трансформатор состоит из ферромагнитного сердечника, на который надеты две катушки .

Первичной обмоткой называется катушка, подключенная к источнику переменного напряжения U 1 .

Вторичной обмоткой называется катушка, которую можно подключать к приборам, потребляющим электрическую энергию .

Приборы, потребляющие электрическую энергию, выполняют роль нагрузки, и на них создается переменное напряжение U 2 .

Если U 1 > U 2 , то трансформатор называется понижающим, а еслиU 2 > U 1 - то повышающим.

Принцип работы

В первичной обмотке создается переменный ток, следовательно, в ней создается переменный магнитный поток. Этот поток замыкается в ферромагнитном сердечнике и пронизывает каждый виток обеих обмоток. В каждом из витков обеих обмоток появляется одинаковая ЭДС индукции e i 0

Если n 1 и n 2 - число витков в первичной и вторичной обмотках соответственно, то

ЭДС индукции в первичной обмотке e i 1 = n 1 * e i 0 ЭДС индукции во вторичной обмотке e i 2 = n 1 * e i 0

где e i 0 - ЭДС индукции, возникающая в одном витке вторичной и первичной катушки .

    1. Передача электроэнергии

П
ередача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.Потери энергии (мощности) на нагревание проводов можно рассчитать по формуле

Для уменьшения потерь на нагревания проводов необходимо увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется переменный ток частотой 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку законаэлектромагнитной индукции, открытого Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле .

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые области пространства.

Вывод:

Существует особая форма материи – электромагнитное поле – которое состоит из порождающих друг друга вихревых электрического и магнитного полей.

Электромагнитное поле характеризуется двумя векторными величинами – напряженностью Е вихревого электрического поля и индукцией В магнитного поля .

Процесс распространения изменяющихся вихревых электрического и магнитного полей в пространстве называется электромагнитной волной.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла)

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

В наше время уровень производства и потребления энергии — один из важнейших показателей развития производственных сил общества. Ведущую роль при этом играет электроэнергия — самая универсальная и удобная для использования форма энергии. Если потребление энергии в мире увеличивается в 2 раза примерно за 25 лет, то увеличение потребления электроэнергии в 2 раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию.

Производство электроэнергии. Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичны крупные тепловые паротурбинные электростанции (сокращенно: ТЭС). Большинство ТЭС нашей страны использует в качестве топлива угольную пыль. Для выработки 1 кВт. ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Из курса физики 10 класса известно, что КПД тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффициент полезного действия ТЭС достигает 40% . Большая часть энергии теряется вместе с горячим отработанным паром.

Тепловые электростанции — так называемые теплоэлектроцентрали (ТЭЦ) — позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60—70%. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией и теплом сотни городов.

На гидроэлектростанциях (ГЭС) для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды (напор) и от массы воды, проходящей через турбину в каждую секунду (расход воды).

Значительную роль в энергетике играют атомные электростанции (АЭС). В настоящее время АЭС в России дают около 10% электроэнергии.

Основные типы электростанций

Тепловые электростанции строятся быстро, дёшево, но много вредных выбросов в окружающую среду и природные запасы энергоресурсов ограничены.

Гидроэлектростанции строятся дольше, дороже; себестоимость электроэнергии минимальна, но происходит затопление плодородных земель и строительство возможно только в определённых местах.

Атомные электростанции строятся долго, дорого, но электроэнергия дешевле чем на ТЭС, вредное воздействие на окружающую среду не значительное (при правильной эксплуатации), но требует захоронения радиоактивных отходов.

Использование электроэнергии

Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства.

Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города и даже маленьких сёл при аварии парализует их жизнь.

Передача электроэнергии

Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой Q= I2Rt где R — сопротивление линии.

При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии R практически весьма трудно. Приходится уменьшать силу тока.

Поэтому на крупных электростанциях устанавливают повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС — Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов. Общая схема передачи энергии и ее распределения показана на рисунке.

Обычно понижение напряжения и соответственно увеличение силы тока осуществляются в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, — все шире.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение, называемое энергосистемой, дает возможность сгладить пиковые нагрузки потребления энергии в утренние и вечерние часы. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения. Сейчас почти вся территория нашей страны обеспечивается электроэнергией объединенными энергетическими системами. Действует Единая энергетическая система европейской части страны.

ЭЛЕКТРОДИНАМИКА

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при любом изменении магнитного потока через поверхность, ограниченную этим контуром.

Переменный ток- это электрический ток, сила которого каким-либо образом меняется со временем.

Трансформатор- это устройство для повышения или понижения переменного напряжения.

1. Производство:

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

2. Передача:

Трансформатор -устройство, которое позволяет, как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке.

3. Потребление:

Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной" революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой. Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в городе.

Проблемы электросбережения. Россия имеет огромные перспективы по энергосбережению и одновременно является одной из самых расточительных в мире стран. Энергосбережение напрямую зависит от рационального использования существующих энергоресурсов. Огромные потери энергии характерны жилищно-коммунальному хозяйству. По подсчётам экспертов, около 70% теплопотерь происходит из-за халатного отношения потребителей. Часто в квартирах установлены батареи без регулировки мощности, вследствие чего они работают на всю и жильцам приходится открывать окна для снижения температуры в помещении. Для реализации потенциала энергосбережения в ЖКХ предполагается ввести повсеместное внедрение приборов учета, перейти к обязательным стандартам энергоэффективности для новых и реконструируемых зданий, модернизировать системы теплоснабжения зданий и сооружений, внедрить энергосберегающие системы освещения, внедрение энергосберегающих приборов и технологий на котельных, очистных сооружениях, предприятиях водоканала, предоставление бюджетным организациям прав распоряжения средствами, сэкономленными в результате реализации проектов по энергосбережению на срок до 5 лет и другое.



Техника безопасности в обращении с электрическим током. Опасным для человека считается ток от 25 В. В данной ситуации нужно четко отличать напряжение и силу тока. Убивает именно последняя. Для примера: голубые искорки статических разрядов имеют напряжение 7000 В, но ничтожную силу, тогда как напряжение розетки в 220 В, но с силой тока 10-16 А может стать причиной смерти. Более того, прохождение тока с силой 30-50 мА через сердечную мышцу уже может вызвать фибрилляцию (трепетание) сердечной мышцы и рефлекторную остановку сердца. Чем это закончится, вполне понятно. Если ток не заденет сердце (а пути электричества в человеческом организме весьма причудливы), то его воздействие может вызвать паралич дыхательных мышц, что тоже ничего хорошего не сулит.

Электромагнитное поле и электромагнитные волны. Электромагнитное поле - особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Скорость электромагнитных волн. Длина волны есть частное от деления скорости на частоту.

Принципы радиосвязи. Принципы радиосвязи заключаются в следующем. Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.